题名: |
冻融-动力扰动作用下裂隙砂岩损伤演化及冲击力学特性研究
|
作者: |
陈世官
|
学号: |
20104053004
|
保密级别: |
保密(4年后开放)
|
语种: |
chi
|
学科代码: |
081401
|
学科: |
工学 - 土木工程 - 岩土工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2025
|
学校: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
土木工程
|
研究方向: |
岩石动力学与工程应用
|
导师姓名: |
张慧梅
|
导师单位: |
西安科技大学
|
提交日期: |
2024-12-10
|
答辩日期: |
2024-12-03
|
外文题名: |
Damage Evolution and Impact Mechanical Properties of Fissured Sandstone under Freeze-Thaw-Dynamic Disturbance
|
关键词: |
裂隙砂岩 ; 冻融循环 ; 动力扰动 ; 岩桥特征 ; SHPB ; 损伤本构模型
|
外文关键词: |
Fissured sandstone ; Freeze-thaw cycle ; Dynamic disturbance ; Rock-bridge characteristics ; SHPB ; Damage constitutive model
|
摘要: |
︿
在西部寒区的矿产开采和岩体工程中,由于温差大及频繁的动力扰动,常引发含岩桥裂隙岩体失稳的高速“崩→滑→流”链式大型滑坡灾害。因此,研究冻融与动力扰动下含岩桥裂隙岩体的损伤演化与冲击力学特性对提升寒区岩土工程安全性至关重要。本研究运用室内试验和理论分析等方法,深入分析冻融循环和动力扰动下含岩桥裂隙砂岩细观结构演化规律,探究裂隙砂岩损伤演化的主控因素。通过开展冲击力学特性试验,结合细观结构和变形场测试,揭示细观损伤、能量耗散与宏观变形破坏之间的联动机制。构建基于细观损伤的冻融-动力扰动下裂隙砂岩动态损伤本构模型,理论表征其在复杂环境下损伤累积直至变形破坏的动力学行为。主要研究内容及结论如下:
(1)通过对含不同岩桥特征的裂隙砂岩开展冻融循环试验,并结合核磁共振测试(NMR),研究冻融前后岩样质量、纵波波速、表观形态及孔隙结构演化规律。结果表明:随冻融循环次数增加,裂隙砂岩的质量和波速显著变化,特别是在前中期,微裂隙迅速扩展,岩体结构劣化加剧,岩桥区域裂隙扩展尤为明显。冻融前期孔隙率迅速增加,微小孔隙加速发育;冻融后期孔隙演化趋于饱和,连通性增强,孔隙网络复杂化,体积增长放缓。岩桥特征显著影响冻融损伤,较短的岩桥和较大倾角加剧局部应力集中,促进微裂隙扩展与孔隙连通,损伤累积加大。孔隙结构非均质性和和连通性随冻融次数增加而增大。
(2)通过对冻融作用后的裂隙砂岩开展动力扰动试验,并结合CT扫描技术,研究不同动力扰动(次数和强度)条件下冻融裂隙砂岩细观参数及岩桥结构损伤演化特征。结果表明:在不同动力扰动强度下,冻融裂隙砂岩的内部损伤模式差异显著。低扰动强度下,微裂隙广泛分布于砂岩浅表层,形成“浅而广”的裂隙网络;高扰动强度下,裂隙纵深扩展增强,呈现“深而狭”的裂纹特征。扰动强度直接影响裂隙分布与扩展,决定破坏形态与损伤深度。随着扰动次数增加,裂隙网络扩展贯通,细观结构参数:孔隙率、连通孔隙率和分形维数显著增加,损伤加剧。较大岩桥倾角加速水分渗透与微裂纹扩展,加剧冻融损伤;而岩桥长度增加减弱裂隙间相互作用,起到一定缓冲作用,提升结构稳定性。
(3)采用分离式霍普金森压杆(SHPB)试验系统对冻融-动力扰动下裂隙砂岩开展冲击力学试验,结合高速摄影技术监测冲击破坏中裂纹扩展过程,揭示裂隙砂岩的动力学响应与破坏模式转变机制。结果表明:岩桥特征(长度和倾角)显著影响裂隙砂岩的初始强度,较短岩桥和较大倾角降低强度,削弱承载与抗冲击能力,裂纹扩展加剧。低扰动强度下裂隙扩展缓慢,峰值应力小幅回升;随扰动强度增加,裂隙扩展加快,破坏由局部裂隙转变为整体失稳。动力扰动在低冻融循环下的作用较为明显,主要表现为促进裂纹集中扩展,而在高冻融循环下,冻融效应逐渐占据主导地位,使裂纹扩展更加复杂和分散,破坏模式由局部损伤转为整体失稳。
(4)基于冻融-动力扰动下裂隙砂岩冲击力学试验,对冲击破坏后的破碎块体进行筛分试验,结合能量耗散理论和微观电镜扫描(SEM)试验,探究裂隙砂岩宏观破碎分形、能量耗散与细观结构损伤之间的联动机制。结果表明,岩桥越短、倾角越大,破碎程度加剧,分形维数升高。中等扰动强度促进裂纹扩展和能量耗散,高扰动强度则导致破坏模式集中化,使分形维数降低。冻融循环与动力扰动组合作用加剧损伤,在低冻融循环次数下,裂纹扩展路径复杂,破碎颗粒分散;在高冻融循环次数下,动力扰动加速了裂隙贯通,破坏过程更加集中,破碎细化,能量耗散减少。随冲击气压增加,裂隙扩展加速,分形维数升高,细观结构损伤加剧。
(5)基于宏细观损伤理论,将冻融损伤和裂隙损伤定义为裂隙砂岩的初始损伤,结合连续损伤理论,推导出宏细观损伤变量。通过NMR测试中获得的细观参数表征冻融损伤,结合裂隙几何特性与断裂理论推导裂隙损伤变量。基于CT试验结果,明确扰动冲击下砂岩孔隙结构的演化特征,构建扰动冲击损伤变量。基于裂隙砂岩的黏弹特性,引入扰动-损伤黏性元件,建立考虑冻融和裂隙损伤的黏弹性动态本构模型,基于试验结果,验证了损伤变量表征岩体损伤累积直至破坏的过程以及本构模型描述材料动力学行为的准确性和可靠性。
﹀
|
外文摘要: |
︿
In the mineral mining and rock engineering in the western cold zone, the large temperature difference and frequent dynamic perturbation often trigger the large-scale landslide disaster of high-speed avalanche→slide→flow chain, which is caused by the destabilisation of the rock body containing the rock bridge fissure. Therefore, it is important to study the damage evolution and impact mechanical properties of rock bodies with rock bridge fissures under freeze-thaw and dynamic disturbances to improve the safety of geotechnical engineering in cold regions. In this study, indoor tests and theoretical analyses are used to analyse the fine structure evolution law of rock bridge fissured sandstone under freeze-thaw cycle and dynamic disturbance, and to investigate the main controlling factors of the damage evolution of fissured sandstone. By conducting impact mechanical property tests, combined with fine structure and deformation field tests, the linkage mechanism between fine damage, energy dissipation and macro deformation damage is revealed. A dynamic damage model based on fine-scale damage is constructed for fractured sandstone under freeze-thaw-dynamic perturbation, and the kinetic behaviours of damage accumulation and deformation damage are theoretically characterised in complex environments. The main research contents and conclusions are as follows:
(1) The freeze-thaw cycle test was carried out on fissured sandstones with different rock-bridge characteristics and combined with nuclear magnetic resonance (NMR) test to study the mass, longitudinal wave velocity, apparent morphology and pore structure evolution before and after freezing and thawing. The results show that with the increase of freeze-thaw cycles, the mass and wave velocity of the fractured sandstone change significantly, especially in the first and middle stages, the microfracture expands rapidly, the structural deterioration of the rock body is intensified, and the fracture expansion in the area of rock bridge is especially obvious. In the pre-freeze-thaw stage, the porosity increased rapidly and the development of micropores accelerated; in the post-freeze-thaw stage, the pore evolution tended to be saturated, the connectivity was enhanced, the pore network was complicated, and the volume growth slowed down. Rock bridge characteristics significantly affect the freeze-thaw damage, shorter rock bridges and larger inclination angle exacerbate the local stress concentration, promote the expansion of microfractures and pore connectivity, and increase the accumulation of damage. Pore structure inhomogeneity and connectivity increased with the number of freeze-thaw events.
(2) By carrying out dynamic disturbance tests on the fractured sandstone after freeze-thaw action and combining with CT scanning technology, we study the fine-scale parameters of the freeze-thaw fractured sandstone and the structural damage evolution characteristics of the rock bridges under different conditions of dynamic disturbance (number and intensity). The results show that the internal damage patterns of freeze-thaw fissured sandstone vary significantly under different dynamic disturbance intensities. Under low disturbance intensity, the microfissures are widely distributed in the shallow surface layer of sandstone, forming a shallow and wide fissure network; under high disturbance intensity, the longitudinal expansion of the fissures is enhanced, presenting a deep and narrow fissure characteristic. The disturbance intensity directly affects the distribution and expansion of cracks, and determines the damage pattern and damage depth. As the number of disturbances increases, the fracture network expands and penetrates, and the fine structural parameters: porosity, connected porosity and fractal dimension increase significantly, and the damage is aggravated. The larger inclination angle of the bridge accelerates water penetration and microcrack expansion, which exacerbates the freeze-thaw damage, while the increased length of the bridge weakens the interactions between the cracks, plays a certain buffer role, and improves the stability of the structure.
(3) Impact mechanical tests were carried out using the Separate Hopkinson Pressure Bar (SHPB) test system on fractured sandstone under freeze-thaw-dynamic perturbation, and high-speed photography was used to monitor the process of crack extension during impact damage, to reveal the kinetic response of the fractured sandstone and the mechanism of damage mode transformation. The results show that the characteristics of rock bridges (length and dip) significantly affect the initial strength of the fissured sandstone, and shorter bridges and larger dips reduce the strength, weaken the load-bearing and impact-resistant capacity, and intensify the crack extension. Fracture extension is slow at low disturbance strengths, and peak stresses recover slightly; fracture extension accelerates with increasing disturbance strengths, and damage is transformed from localised fissures to overall instability. The role of dynamic perturbation is more obvious under low freeze-thaw cycle, which is mainly manifested in the promotion of crack centralised expansion, while under high freeze-thaw cycle, the freeze-thaw effect gradually takes the dominant position, which makes the crack expansion more complex and dispersed, and the damage mode is changed from local damage to overall instability.
(4) Based on the impact mechanics test of fissured sandstone under freeze-thaw-dynamic perturbation, sieve test was carried out on the crushed blocks after impact damage, combined with the energy dissipation theory and microscopic electron microscope scanning (SEM) test, to investigate the linkage mechanism between macroscopic crushing fractal, energy dissipation, and fine structural damage of fissured sandstone. The results show that the shorter the rock bridge and the larger the dip angle, the degree of fragmentation increases and the fractal dimension rises. Medium perturbation intensity promotes crack extension and energy dissipation, while high perturbation intensity leads to the centralisation of the damage pattern, resulting in lower fractal dimension. The combined effect of freeze-thaw cycles and dynamic perturbation exacerbated the damage. At low freeze-thaw cycle counts, the crack extension paths were complex and the broken particles were dispersed; at high freeze-thaw cycle counts, the dynamic perturbation accelerated the crack penetration, and the damage process was more concentrated, with finer crushing and reduced energy dissipation. With the increase of impact air pressure, the crack extension accelerates, the fractal dimension rises, and the damage of fine structure increases.
(5) Based on the macro-fine-scale damage theory, freeze-thaw damage and fissure damage are defined as the initial damage of fissured sandstone, and macro-fine-scale damage variables are derived by combining the continuous damage theory. The freeze-thaw damage is characterised by the fine-scale parameters obtained in the NMR test, and the fissure damage variables are deduced by combining the geometric properties of the fissures with the fracture theory. Based on the CT test results, the evolution characteristics of sandstone pore structure under perturbation impact are clarified, and the perturbation impact damage variables are constructed. Based on the viscoelastic properties of fissured sandstone, a perturbation-damage viscous element is introduced, and a viscoelastic dynamic constitutive model considering freeze-thaw and fissure damage is established. Based on the experimental results, it is verified that the damage variables characterize the process of damage accumulation and destruction of the rock body, and that the constitutive model describes the material dynamics accurately and reliably.
﹀
|
参考文献: |
︿
[1]彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, 39(12): 2377-2389. [2]李长洪, 肖永刚, 王宇, 等. 高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J]. 工程科学学报, 2019, 41(11): 1374-1386. [3]贾海梁, 赵思琪, 丁顺, 等. 含水裂隙冻融过程中冻胀力演化及影响因素研究[J]. 岩石力学与工程学报, 2022, 41(9): 1832-1845. [4]陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336. [5]申艳军, 魏欣, 张蕾, 等. 高寒山地区冰碛土水热迁移规律及聚冰冻胀孕灾机制研究进展[J]. 工程地质学报, 2022, 30(5): 1450-1465. [6]Xie H P, Zhu J B, Zhou T, et al. Conceptualization and preliminary study of engineering disturbed rock dynamics[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources, 2020, 6(2): 34. [7]Deprez M, Kock T D, Schutter G D, et al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews, 2020, 203: 103143. [8]乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1094-1103. [9]李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题[J]. 中国有色金属学报, 2011, 21(10): 2551-2563. [10]李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014. [11]Li X B, Gong F Q, Ming T, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767-782. [12]杨更社, 张全胜. 冻融环境下岩体细观损伤及水热迁移机理分析[M]. 西安: 陕西科学技术出版社, 2005. [13]Amirkiyaei V, Ghasemi E, Faramarzi L. Estimating uniaxial compressive strength of carbonate building stones based on some intact stone properties after deterioration by freeze-thaw[J]. Environmental Earth Sciences, 2021, 80(9). [14]Gawin D, Pesavento F, Koniorczyk M, et al. Poro-mechanical model of strain hysteresis due to cyclic water freezing in partially saturated porous media[J]. International Journal of Solids and Structures, 2020, 206: 322-339. [15]Hori M, Morihiro H. Micromechanical analysis on deterioratIon due to freezing and thawing in porous brittle materials[J]. International Journal of Engineering Science, 1998, 36(4): 511-522. [16]黄诗冰, 刘泉声, 刘艳章, 等. 低温热力耦合下岩体椭圆孔(裂)隙中冻胀力与冻胀开裂特征研究[J]. 岩土工程学报, 2018, 40 (3): 459-467. [17]刘慧, 杨更社, 贾海梁, 等. 裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J]. 岩石力学与工程学报, 2016, 35 (12): 2516-2524. [18]贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石与工程学报, 2016, 35 (05): 879-895. [19]Onrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9): 3109-3124. [20]Taylor G C, Luthin J N. A model of coupled heat and moisture transfer during soil freezing[J]. Journal of Geophysics, 1978, 15: 548-555. [21]Shen Y, Yang G, Huang H, et al. The impact of environmental temperature change on the interior temperature of quasi-sandstone in cold region: Experiment and numerical simulation[J]. Engineering Geology, 2018, 239: 241-253. [22]Lin H, Lei D, Yong R, et al. Analytical and numerical analysis for frost heaving stress distribution within rock joints under freezing and thawing cycles[J]. Environmental Earth Sciences, 2020, 79, 305. [23]Hall K, Thorn C, Sumner P. On the persistence of ‘weathering’[J]. Geomorphology, 2012, 149/150: 1-10. [24]Hall K. Rock temperatures and implications for cold region weathering: new data from Viking Valley , Alexander Island(Antarctica)[J]. Permafrost and Periglacial Processes,1997, 8(1): 69–90. [25]C P T. The air requirement of frost resistant conrete[J]. Highw. Res. Board Porc., 1949, 29: 184-211. [26]Powers T C. A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute 1945, 164: 245-272. [27]Vlahou L, Worster G M. Ice growth in a spherical cavity of a porous medium[J]. Journal of Glaciology, 2010, 56 (196): 271-277. [28]Hiroi M, Mizusaki T, Tsuneto T, et al. Frost-heave phenomena of 4He on porous glasses[J]. Physical review. B, Condensed matter, 1989, 40(10): 6581-6590. [29]Hodgson C, Mcintosh R. The Freezing of water and benzene in porous vycor glass[J]. Canadian Journal of Chemistry, 1960, 38(6): 958-971. [30]Taber S. Frost heaving[J]. Journal of Geology, 1929, 37(5) : 428-461. [31]Taber S. The mechanics of frost heaving[J]. Journal of Geology, 1930, 38(4) : 303-317. [32]Taber S. The growth of crystals under external pressure[J]. American Journal of Science, s4-41(246). [33]Miller R. Lens initiation in secondary heaving[J]. Proceedings of the International Symposium on Frost Action in Soils, 1977: 68-74. [34]Miller R.Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972 (393). [35]Ruedrich J, Siegesmund S. Salt and ice crystallisation in porous sandstones[J]. Environmental Geology, 2007,52(2):343-367. [36]Sellberg J A, Huang C, McQueen T A, et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature[J]. Nature, 2014, 510(7505): 381-384. [37]Marcolli C. Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice[J]. Atmospheric Chemistry and Physics, 2020, 20(5): 3209-3230. [38]Hallett J. The temperature dependence of the viscosity of supercooled water[J]. Proceedings of the Physical Society (1960), 1963, 82(6): 1046-1050. [39]Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions[J]. Science, 2006, 314(5802): 1127-1129. [40]刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报, 2016, 35(10): 2000-2012. [41]康永水, 刘泉声, 赵军, 等. 岩石冻胀变形特征及寒区隧道冻胀变形模拟[J]. 岩石力学与工程学报, 2012, 31(12): 2518-2526. [42]刘泉声, 黄诗冰, 康永水, 等. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(6): 1116–1127. [43]Everett D H. The thermodynamics of frost damage to poroussolids [J]. Transactions of the Faraday Society, 1961, 57(5): 1541-1551. [44]Sheng D, Axelsson K, Knutsson S. Frost heave due to ice lens formation in freezing soils: theory and verification [J]. Hydrology Research, 1995, 26(2): 125-146. [45]Watanabe K, Flury M. Capillary bundle model of hydraulic conductivity for frozen soil [J]. Water Resources Research, 2008, 44( 12): 29-37 [46]Peppin S S, Style R W. The physics of frost heave and ice-lens growth[J]. Vadose Zone Journal, 2013, 12(1). [47]陈汉青, 程桦, 荣传新, 等. 冻土/岩的液相吸力与固相冰压作用机制[J]. 岩土力学, 2023, 44(01): 251-258. [48]陈汉青, 程桦, 曹璐, 等. 土/岩体的冻融回滞及水分迁移综合机制研究[J]. 岩石力学与工程学报, 2022, 41(11): 2365-2375. [49]陈汉青, 程桦, 曹广勇, 等. 冻土毛细-薄膜水迁移统一模型及其试验验证[J]. 土木工程学报, 2022, 55(06): 92-101. [50]周家作, 谭龙, 韦昌富, 等. 土体冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36(3): 777-785. [51]曾强. 水泥基材料低温结晶过程孔隙力学研究[D]. 北京: 清华大学, 2012. [52]Scherer G W. Crystallization in pores. Cem. Concr. Res., 1999, 29(8): 1347-1358. [53]Dash J G, Fu H, Wettlaufer J S. The premelting of ice and its environmental consequences. Rep. Progr. Phys., 1995, 58: 115-167. [54]Setzer M J. Micro-ice-Lens Formation in Porous Solid. J. Coll. Inter. Sci., 2001, 243(1): 193-201. [55]Valenza J J, Scherer G W. Mechanism for salt scaling. J. Am. Ceram. Soc., 2006, 89(4): 1161-1179 [56]Fagerlund G G. Mechanical damage and fatigue effects associated with freeze-thaw of materials. In Setzer M J et al., 117-132. [57]CoussyO. Poromechanics. Seconded., The Atrium, Southern Gate, Chichester, West Sussex: John Wiley&Sons, 2004. [58]Boer R, Katsube N. Theory of Porous Media: Highlights in Historical Development and Current State. Appl. Mech. Rev., 2002, 55: B32. [59]陈颙. 声发射技术在岩石力学研究中的应用[J]. 地球物理学报, 1977, (04): 312-322. [60]张蓉蓉, 沈永辉, 马冬冬, 等. 循环冲击作用下冻融红砂岩动力学特性与损伤机理[J]. 爆炸与冲击, 2024, 44(08): 133-148. [61]Liu H, Han S, Yang G, et al. Experimental study on mesostructural damage evolution of sandstone subjected to freeze-thaw cycling under uniaxial compression[J]. Research in Cold and Arid Regions, 2022, 14(05): 317-328. [62]刘慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38(04): 830-839. [63]Shkuratnik V L, Filimonov Y L, KUCHURIN S V. Regularities of acoustic emission in coal samples under triaxial compression[J]. Journal of Mining Science, 2005, 41(1): 44-52. [64]李勇, 桂辉高, 陈结, 等. 不同冻融条件下砂岩损伤力学特性[J]. 采矿与安全工程学报, 2024, 41(04): 813-823. [65]苏占东, 孙进忠, 夏京, 等. 冻融循环对花岗岩声发射特性影响的试验研究[J]. 岩石力学与工程学报, 2019, 38(05): 865-874. [66]Pestman B J, Munster J G V. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33(6): 585–593. [67]吴贤振, 刘祥鑫, 梁正召, 等. 不同岩石破裂全过程的声发射序列分形特征试验研究[J]. 岩土力学, 2012, 33(12): 3561-3569. [68]Kusunose K, Lei X, Nishizawa O, et al. Effect of grain size on fractal structure of acoustic emission hypocenter distribution in granitic rock[J]. Physics of the Earth and Planetary Interiors, 1991, 67(1/2): 194–199. [69]Castillo-villa P O, Baro J, Planes A. Crackling noise during failure of alumina under compression: the effect of porosity[J]. Journal of Physics: Condensed Matter, 2013, 25(29): 292202. [70]Wright J S, The spalling of overgrowths during experimental freeze–thaw of a quartz sandstone as a mechanism of quartz silt production [J], Micron, 2000, 31(6): 631-638. [71]Mousavi SZS, Tavakoli H, Moarefvand P, et al. Micro-structural, Petro-graphical and Mechanical Studies of Schist Rocks Under the Freezing-thawing Cycles[J]. Cold Regions Science and Technology, 2020, 174(6): 103039.1-103039.13. [72]刘汉香, 叶刁瑜, 别鹏飞, 等. 循环加卸载过程中灰岩微细观损伤特征的试验研究[J]. 岩土力学, 2024, 45(03): 685-696. [73]张志镇, 高峰, 徐小丽. 花岗岩力学特性的温度效应试验研究[J]. 岩土力学, 2011, 32(08): 2346-2352. [74]Erarslan N . A Study on the Evaluation of the Fracture Process Zone in CCNBD Rock Samples[J]. Experimental Mechanics, 2013, 53(8): 1475-1489. [75]张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, (01): 30-34. [76]马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41(02): 227-233. [77]张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671. [78]Wang Y, Que J M, Wang C, et al. Three-dimensional observations of meso-structural changes in bimsoil using X-ray computed tomography (CT) under triaxial compression[J]. Construction and Building Materials, 2018, 773-786. [79]刘慧. 基于CT图像处理的冻结岩石细观结构及损伤力学特性研究[D]. 西安: 西安科技大学, 2013. [80]Maji V. An experimental investigation of micro-and macrocracking mechanisms in rocks by freeze-thaw cycling[D]. Falmer, East Sussex, UK: University of Sussex, 2021. [81]Kawakata H, Cho A, Kiyama T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan[J]. Tectonophysics, 1999, 313(3): 293-305. [82]Zhou X, Zhao Z, Liu Y. Digital spatial cracking behaviors of fine‐grained sandstone with precracks under uniaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(13): 1770-1787. [83]Duan Y, Li X, Zheng B, et al. Cracking Evolution and Failure Characteristics of Longmaxi Shale Under Uniaxial Compression Using Real-Time Computed Tomography Scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003-3015. [84]De K T, Boone M A, De Schryver T, et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling[J]. Environ Sci Technol, 2015, 49(5): 2867-2874. [85]张超谟, 陈振标, 张占松, 等. 基于核磁共振T2谱分布的储层岩石孔隙分形结构研究[J]. 石油天然气学报, 2007, 29(4): 80-86. [86]王胜. 用核磁共振分析岩石孔隙结构特征[J]. 新疆石油地质, 2009, 30(6): 768-770. [87]卜墨华, 郭平业, 金鑫, 等. 高温损伤花岗岩细观结构演化试验研究[J/OL]. 岩石力学与工程学报, 1-16. [88]Xi Y, Xing J Y, Jiang H L, et al. Pore characteristic evolution and damage deterioration of granite subjected to the thermal and cooling treatments combined with the NMR method[J]. Bulletin of Engineering Geology and the Environment, 2023, 82: 182. [89]Wu R Y, Chen S W, Yang F B, et al. Experimental Study on the Thermal Healing Effect on Stress-Damaged Granite[J]. Rock Mechanics and Rock Engineering, 2023, 56: 6615-6629. [90]Li Q, Li X B, Yin T B. Factors affecting pore structure of granite under cyclic heating and cooling:A nuclear magnetic resonance investigation[J]. Geothermics, 2021, 96:102198. [91]李杰林, 朱龙胤, 周科平, 等. 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(09): 3524-3532. [92]岳文正, 陶果, 赵克超. 用核磁共振及岩石物理实验求地层束缚水饱和度及平均孔隙半径[J]. 测井技术, 2002, (01): 22-25+89. [93]Mao Z , He Y , Ren X . An Improved Method of Using NMR T2 Distribution to Evaluate Pore Size Distribution[J]. Chinese Journal of Geophysics, 2005, 48(2): 412-418. [94]Wu W, Gong F Q, Jiang Q. Strength weakening effect of high static pre-stressed granite subjected to low-frequency dynamic disturbance under uniaxial compression[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7). [95]Xiao P, Li D Y, Zhao G Y, et al. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads [J]. Journal of Central South University, 2020, 27(10): 2945-2958. [96]李淼, 乔兰, 李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析[J]. 岩土工程学报, 2017, 39(07): 1336-1343. [97]李淼. 节理岩体的动态力学特性及应力波传播特征的试验研究[D]. 北京: 北京科技大学, 2018. [98]赵光明, 刘崇岩, 许文松, 孟祥瑞. 扰动诱发高应力卸荷岩体破坏特征实验研究[J]. 煤炭学报, 2021, 46(02): 412-423. [99]孙晓元. 受载煤体振动破坏特征及致灾机理研究[D]. 北京: 中国矿业大学(北京), 2016. [100]Li D Y, Han Z Y, Sun X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623-1643. [101]Li X B, Zhou T, Li D Y. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split-hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2016, 50(1): 1-16. [102]Zhou L, Zhu Z M, Dong Y Q, et al. Study of the fracture behavior of mode I and mixed mode I/II cracks in tunnel under impact load [J]. Tunneling and Underground Space Technology, 2019, 84: 11-21. [103]李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究[J]. 岩石力学与工程学报, 2017, 36(12): 2872-2883. [104]潘博, 汪旭光, 徐振洋, 等. 节理角度对岩石材料的动态响应影响研究[J]. 岩石力学与工程学报, 2021, 40(03): 566-575. [105]Du K, Tao M, Li X B, Zhou J. Experimental Study of Slabbing and Rockburst Induced By True-triaxial Unloading and Local Dynamic Disturbance[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437-3453. [106]Hu L H, Li Y C, Liang X, Tang C A, Yan L B. Rock Damage and Energy Balance of Strainbursts Induced By Low Frequency Seismic Disturbance at High Static Stress[J]. Rock Mechanics and Rock Engineering, 2020, 53(11): 4857-4872. [107]Su G S, Feng X T, Wang J H, Jiang J Q, Hu L H. Experimental Study of Remotely Triggered Rockburst Induced By a Tunnel Axial Dynamic Disturbance Under True-triaxial Conditions[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207-2226. [108]刘红岩, 张利民, 苏天明, 等. 节理岩体损伤本构模型及工程应用[M]. 北京: 冶金工业出版社, 2016. [109]Xu J, Pu H, Sha Z. Mechanical behavior and decay model of the sandstone in Urumqi under coupling of freeze-thaw and dynamic loading[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 1-16. [110]Ma Q, Ma D, Yao Z. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen[J]. Cold Regions Science and Technology, 2018, 153: 10-17. [111] Xin Y L, Yi L, Feng D, et al. Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading[J]. International Journal of Mechanical Sciences, 2022, 226: 107405. [112]Hua S M, Li X L, Lei W, et al. Experimental Study on Mechanical Properties of Freeze-Thaw Damaged Red Sandstone under Combined Dynamic and Static Loading[J]. Shock and Vibration, 2021, 2021. [113]Luo Y, Qu D, Wang G, et al. Degradation model of the dynamic mechanical properties and damage failure law of sandstone under freeze-thaw action[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106094. [114]Qing S P, Jun H H, Fu L Z, et al. Study on Long-Term Dynamic Mechanical Properties and Degradation Law of Sandstone under Freeze-Thaw Cycle[J]. Shock and Vibration, 2020, 2020. [115]Liu C, Deng H, Zhao H, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test[J]. Cold Regions Science and Technology, 2018, 155: 327-332. [116]杨念哥, 周科平, 雷涛, 等. 冻融循环下砂岩动力特性及其破坏规律[J]. 中国有色金属学报, 2016, 26(10): 2181-2187. [117]陈彦龙, 崔慧栋, 李明, 等. 实时低温条件下露天矿饱和损伤煤系砂岩动态力学特性及其破坏机制[J]. 煤炭学报, 2022, 47(03): 1168-1179. [118]Gu Q , Zhang Q, Ye S, et al. Shear fracture behavior and damage constitutive model of rock joints considering the effect of pre-peak cyclic loading[J]. Theoretical and Applied Fracture Mechanics, 2024, 130: 104289. [119]Gao R, Wang H, Cao R, et al. Damage deterioration mechanism and damage constitutive modelling of marble after cyclic impact loading[J]. Journal of Materials Research and Technology, 2024, 29: 1293-1304. [120]Liang X, Ding C, Zhu X, et al. Visualization study on stress evolution and crack propagation of jointed rock mass under blasting load[J]. Engineering Fracture Mechanics, 2024, 296: 109833. [121]Sun B, Yang P, Liu S, et al. Impact dynamic characteristics and constitutive model of granite damaged by cyclic loading[J]. Journal of Materials Research and Technology, 2023, 24: 333-345. [122]Xie X, Li J, Zheng Y. Experimental study on dynamic mechanical and failure behavior of a jointed rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 168: 105415. [123]平琦, 苏海鹏, 马冬冬, 等. 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(04): 932-942+953. [124]朱建波, 付乙梓, 李瑞, 等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2023, 42(S1): 3558-3566. [125]Li Z, Hu Y, Wang G, M, et al. Study on cyclic blasting failure characteristics and cumulative damage evolution law of tunnel rock mass under initial in-situ stress[J]. Engineering Failure Analysis, 2023, 150: 107310. [126]Shi H, Chen W, Zhang H, et al. Dynamic strength characteristics of fractured rock mass[J]. Engineering Fracture Mechanics, 2023, 292: 109678. [127]Rae A, Kenkmann T, Padmanabha V, et al. Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks[J]. Journal of Geophysical Research: Planets, 2020, 125(10): e2020JE006561. [128]Qiu J, Li D, Li X, et al. Numerical investigation on the stress evolution and failure behavior for deep roadway under blasting disturbance[J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106278. [129]Yan Z, Dai F, Liu Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535-5552. [130]Yan Z, Dai F, Zhu J, et al. Dynamic Cracking Behaviors and Energy Evolution of Multi-flawed Rocks Under Static Pre-compression[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 5117-5139. [131]王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石材料板动态压缩破坏试验研究[J]. 岩石力学与工程学报, 2018, 37(11): 2489-2497. [132]王奇智. 预制节理裂隙类岩石材料板动态压缩破坏试验研究[D]. 天津:天津大学, 2019. [133]Ruedrich J, Siegesmund S. Salt and ice crystallisation in porous sandstones[J]. Environmental Geology, 2007,52(2):343-367. [134]Wang Z L, Tian N C, Wang J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact[J]. Journal of Materials in Civil Engineering, 2018,30(11). [135]Chen J, Mei S, Irizarry J T, et al. A monte carlo approach to approximating the effects of pore geometry on the phase behavior of soil freezing[J]. Journal of Advances in Modeling Earth Systems, 2020,12(10). [136]Diederichs M, Kaiser P, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. [137]Zhao T, Yang G, Wang L, et al. Dynamic Splitting Behavior and the Constitutive Relationship of Frozen Sandstone Containing a Single Fissure[J]. Shock and Vibration, 2021, 2021: 1-13. [138]白瑶. 含冰裂隙红砂岩力学特性及蠕变本构模型试验研究[D]. 北京: 中国矿业大学(北京), 2019. [139]You L C, Peng X, Xi D, et al. Study on Damage Constitutive Model of Rock under Freeze-Thaw-Confining Pressure-Acid Erosion[J]. Applied Sciences, 2021, 11(20): 9431-9431. [140]Xie S, Han Z, Chen Y, et al. Constitutive modeling of rock materials considering the void compaction characteristics[J]. Archives of Civil and Mechanical Engineering, 2022, 22(2). [141]张超, 杨楚卿, 白允. 岩石类脆性材料损伤演化分析及其模型方法研究[J].岩土力学, 2021, 42(09): 2344-2354. [142]杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(03): 545-555. [143]Zhang H M, Meng X Z, Yang G S. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Regions Science and Technology, 2020, 174: 103056. [144]Lu Y, Li X, Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20-28. [145]Zhou S, Xia C, Zhao H, et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica, 2017, 65(5): 893-906. [146]Wen T, Liu Y, Yang C, et al. A rock damage constitutive model and damage energy dissipation rate analysis for characterising the crack closure effect[J]. Geomechanics and Geoengineering, 2017, 13(1): 54-63. [147]张慧梅, 雷利娜, 杨更社. 等围压条件下岩石本构模型及损伤特性[J].中国矿业大学学报, 2015, 44(01):59-63. [148]张明, 王菲, 杨强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报, 2013, 35(11): 1965-1971. [149]张二锋, 刘慧, 康跃明, 等. 冻融受荷砂岩力学性能劣化与统计损伤模型研究[J]. 煤炭科学技术, 2024, 52(05): 84-91. [150]李修磊, 陈洪凯, 张金浩. 考虑初始空隙压密的岩石变形全过程本构模型[J]. 西南交通大学学报, 2022, 57(02): 314-321. [151]宋勇军, 操警辉. 冻融-荷载共同作用下砂岩损伤力学特性研究[J/OL]. 煤炭科学技术, 2024. http://kns.cnki.net/kcms/detail/11.2402. TD.202402 27. 1442.004.html. [152]Liu Q, Huang S, Kang Y, et al. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze–thaw[J]. Cold Regions Science and Technology, 2015, 120: 96-107. [153]Huang S, Liu Q, Cheng A, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150. [154]Meng X Z, Zhang H M, Yuan C, et al. Damage constitutive prediction model for rock under freeze–thaw cycles based on mesoscopic damage definition[J]. Engineering Fracture Mechanics, 2023, 293 [155]肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J]. 岩土工程学报, 2023, 45(04): 805-815. [156]Zhang Q, Zhao J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423-439. [157]Zhang B Q, Zhao J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478. [158]Wang S, Li X, Du K, et al. Experimental Study of the Triaxial Strength Properties of Hollow Cylindrical Granite Specimens Under Coupled External and Internal Confining Stresses[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2015-2031. [159]Yang R, Fang S, Li W, et al. Experimental Study on the Dynamic Properties of Three Types of Rock at Negative Temperature[J]. Geotechnical and Geological Engineering, 2019, 37(1): 455-464. [160]Hooker S M, Jaroszynski D A, Burnett K. An improved computational constitutive model for glass[J]. Philosophical transactions. Series A Mathematical physical and engineering sciences, 2017, 375(2085): 182. [161]方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法[J]. 工程力学, 2014, 31(03): 197-204. [162]Zhiliang W, Haochen W, Jianguo W, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks[J]. Computers and Geotechnics, 2021, 135. [163]Taylor L M, Chen E, Pkuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55: 301-320 [164]王礼立. 冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响[J]. 宁波大学学报(理工版), 1995, (03): 30-57. [165]Liu K, Wu C, Li X, et al. A modified HJC model for improved dynamic response of brittle materials under blasting loads[J]. Computers and Geotechnics, 2020, 123: 103584. [166]Xie L, Lu W, Zhang Q, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2017, 66: 19-33. [167]Kong X, Fang Q, Wu H, et al.Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95: 61-71. [168]Tu Z, Lu Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete[J]. International Journal of Impact Engineering, 2010, 37(10): 1072-1082. [169]Abdel-Kader M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact[J]. International Journal of Impact Engineering, 2019, 132: 103312. [170]刘红岩, 杨艳, 李俊峰, 等. 基于TCK模型的非贯通节理岩体动态损伤本构模型[J]. 爆炸与冲击, 2016, 36(03): 319-325. [171]刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型[J]. 岩土工程学报, 2014, 36(10): 1814-1821. [172]裴小龙. 综合考虑宏、细观缺陷耦合的节理岩体动态损伤本构模型研究[D]. 北京: 中国地质大学(北京), 2015. [173]单仁亮, 宋永威, 宋立伟, 等. 西北人工冻结红砂岩的动态时效损伤模型[J]. 煤炭学报, 2018, 43(01): 118-123. [174]Yang J, Zhang Y, Li Q, et al. Dynamic constitutive model of penetrating jointed rock mass based on ZTW model[J]. IOP Conference Series: Earth and Environmental Science, 2019, 237(3): 032110. [175]Yang M D, Qiu B X. A Constitutive Model for Rock Joints under Cyclic Loading[J]. Advanced Materials Research, 2011, 1269(243-249): 2211-2215. [176]赵涛. 冻结裂隙岩体力学特性及冲击动力学响应研究[D]. 西安: 西安科技大学, 2021. [177]闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法——以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(04): 1543-1552. [178]张元中, 肖立志. 单轴载荷下岩石核磁共振特征的实验研究[J]. 核电子学与探测技术, 2006, (06): 731-734+755. [179]Hu Y, Guo Y, Zhang J, et al. A method to determine nuclear magnetic resonance T2 cutoff value of tight sandstone reservoir based on multifractal analysis[J]. Energy Science & Engineering, 2020, 8(4): 1135-1148. [180]FERREIRO J P, VÁZQUEZ E V. Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability[J]. Geoderma, 2010, 160(1): 64-73. [181]LIU K, OSTADHASSAN M, ZOU J, et al. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale[J]. Fuel, 2018, 219: 296-311. [182]HALSEY T C, JENSEN M H, KADANOFF L P, et al. Fractal measures and their singularities: The characterization of strange sets[J]. Physical review A, 1986, 33(2): 1141. [183]GE X, FAN Y, LI J, et al. Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China[J]. Journal of Petroleum Science and Engineering, 2015, 127: 297-304. [184]GE X, FAN Y, ZHU X, et al. Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory — An application in sandstone with complex pore structure[J].GEOPHYSICS, 2015, 80(1): 11-21. [185]陈世官. 梯度冲击作用下冻结红砂岩的动力响应及损伤效应研究[D]. 西安: 西安科技大学, 2020. [186]张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J]. 岩土工程学报, 2022, 44(04): 622-631. [187]袁小清, 刘红岩, 刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型[J]. 岩土力学, 2015, 36(10): 2804-2814. [188]Liu, H. Y., Lv S. R., Zhang L. M., et al. A dynamic damage constitutive model for a rock mass with persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 132-139. [189]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. 1985, 17(1): 83-89. [190]张杰. 循环冲击扰动下裂隙岩体巷道损伤破裂机理与控制研究[D]. 北京: 北京科技大学, 2023. [191]易顺民, 朱珍德. 裂隙岩体损伤力学导论[M]. 北京: 科学出版社, 2005. [192]吕建国, 王志乔, 刘红岩. 岩石断裂与损伤[M]. 北京: 地质出版社, 2013. [193]乔趁. 冻融循环作用下锁固型边坡损伤演化规律及致灾机制研究[D]. 北京: 北京科技大学, 2023. [194]Lee S., Ravichandran G., Crack initiation in brittle solids under multiaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(13): 1645-1658. [195]蔡灿, 伍开松, 袁晓红, 等. 中低应变率下的岩石损伤本构模型研究[J]. 岩土力学, 2015, 36(03): 795-802. [196]江雅勤, 吴帅峰, 刘殿书, 等. 基于元件组合理论的砂岩动态损伤本构模型[J].爆炸与冲击, 2018, 38(04): 827-833. 樊赖宇, 吴志军, 储昭飞, 等. 动态冲击下红砂岩蠕变特性及损伤本构模型[J]. 岩土力学, 2024, 45(06): 1608-1622.
﹀
|
中图分类号: |
TU452
|
开放日期: |
2028-12-11
|