- 无标题文档
查看论文信息

论文中文题名:

 直流无刷电机PWM控制驱动芯片设计    

姓名:

 李思远    

学号:

 19206107028    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0809    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电子科学与技术    

研究方向:

 集成电路与芯片设计    

第一导师姓名:

 徐大林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Design of PWM Control Driver Chip for Brushless DC Motor    

论文中文关键词:

 PWM控制 ; 单极模式 ; 自适应死区 ; 软启动    

论文外文关键词:

 PWM Control ; Unipolar Mode ; Adaptive Dead Band ; Soft Start    

论文中文摘要:

直流无刷电机具有体积小、噪声低及效率高的优点,在工业、航空航天、汽车等领域中被广泛应用。随着电机应用产品不断往小型化方向发展,采用成本更低、集成度更高的直流无刷电机驱动芯片已经逐渐成为市场主流,芯片国产化已成为必然趋势,因此,对直流无刷电机驱动芯片进行研究具有重要意义。

本文设计了一款直流无刷电机PWM控制驱动芯片,通过对直流无刷电机的工作原理及其两种不同类型H桥驱动电路的优缺点进行分析,确定选取高边管为P管的H桥作为驱动主电路;通过对H桥三种工作模式的控制复杂性及损耗进行比对分析,得出单极工作模式更适合直流无刷电机的驱动芯片;据此,设计了单极工作模式下H桥的开关管驱动电路,其主要由自适应死区控制电路、电平转换电路及高压驱动电路组成,其中自适应死区控制电路能够根据开关管栅极电压变化自动调节死区时间,电平转换电路将低压电平信号转换为后级高压驱动电路所需的高压电平信号,高压驱动电路采用电流源对开关管栅极进行充放电,在确保开关管开关速度的同时,可减小EMI;设计了数字PWM模块,可将给定频率(100Hz~100kHz)和占空比(10%~97%)变化范围内的输入PWM转速参考信号转换为恒频(30kHz)同占空比的H桥PWM驱动信号,且采用不断累加单个检测周期占空比检测值并进行平均化的方法,提高了H桥PWM驱动信号精度,同时在芯片上电后使其占空比逐渐上升,实现了软启动功能;另外,设计了芯片的其他关键电路模块,主要包括带隙基准电路、LDO电路、振荡器电路、过温和过压保护电路,最终完成了整体芯片的设计。

基于X-FAB 0.35um BCD工艺对整体电路进行仿真分析,结果表明在芯片上电工作后,电机线圈中电流逐渐增大,实现了软启动的效果,且在不同输入PWM频率及占空比的情况下,输出均符合预期。最后基于X-FAB 0.35um BCD工艺设计规则文件,对整体电路的版图进行设计,并通过了DRC、LVS等验证。

论文外文摘要:

Brushless DC motor has the advantages of small volume, low noise and high efficiency. It is widely used in industry, aerospace, automobile and other fields. With the continuous development of motor application products in the direction of miniaturization, the use of Brushless DC motor drive chips with lower cost and higher integration has gradually become the mainstream of the market, and the localization of chips has become an inevitable trend, it is of great significance to study the drive chip of Brushless DC motor.

In this paper, a PWM control driver chip of Brushless DC motor is designed. Through the analysis of the working principle of Brushless DC motor and the advantages and disadvantages of two different types of H-bridge driver circuits, it is determined to select the H-bridge with high side P transistor as the main driver circuit. By comparing and analyzing the control complexity and loss of the three working modes of H-bridge, it is concluded that the unipolar working mode is more suitable for the drive chip of Brushless DC motor. According to this, the switching transistor driver circuit of H-bridge in unipolar working mode is designed, which is mainly composed of adaptive dead time control circuit, level conversion circuit and high-voltage driver circuit. The adaptive dead time control circuit can automatically adjust the dead time according to the change of switching transistor grid voltage, and the level conversion circuit converts the low-voltage level signal into the high-voltage level signal required by the subsequent high-voltage driver circuit, the high voltage drive circuit uses a current source to charge and discharge the grid of the switch transistor, which can ensure the switching speed of the switch transistor and reduce EMI at the same time. A digital PWM module is designed, which can convert the input PWM speed reference signal within the variation range of given frequency (100Hz ~ 100kHz) and duty cycle (10% ~ 97%) into H-bridge PWM driver signal with constant frequency (30kHz) and the same duty cycle. The method of continuously accumulating and averaging the duty cycle detection value of a single detection cycle is adopted, which not only improves the accuracy of H-bridge PWM driver signal, but also gradually increases its duty cycle after the chip is powered on, The soft start function is realized. In addition, other key circuit modules of the chip are designed, mainly including bandgap reference circuit, LDO circuit, oscillator circuit, over temperature and over voltage protection circuit. Finally, the design of the whole chip is completed.

The whole circuit is simulated and analyzed based on X-FAB 0.35um BCD process. The results show that after the chip is powered on, the current in the motor coil gradually increases, which realizes the effect of soft start, and the output meets the expectation under the conditions of different input PWM frequency and duty cycle. Finally, the layout of the whole circuit is designed based on the X-FAB 0.35um BCD process design rule file, and has been verified by DRC, LVS and so on.

参考文献:

[1] 陈磊, 李洪章. 永磁同步电动机的结构特点分析[J]. 电站系统工程, 2011(4): 34-34.

[2] Ramachandran R, Ganeshaperumal D, Subathra B. Closed-loop Control of BLDC Motor in Electric Vehicle Applications[C]// 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES). IEEE, 2019: 1-5.

[3] De A, Stewart-Height A, Koditschek D. Task-Based Control and Design of a BLDC Actuator for Robotics[J]. IEEE Robotics & Automation Letters, 2019, 4(3): 2393-2400.

[4] Sathyan A, Milivojevic N, Lee Y J, et al. An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 3040-3049.

[5] 蔡红萍, 吴乐彬, 胥芳. 基于自整定模糊-PID控制的直流无刷电机调速系统研究[J]. 机电工程, 2016, 33(8): 991-996.

[6] 程明, 张淦, 花为. 定子永磁型无刷电机系统及其关键技术综述[J]. 中国电机工程学报, 2014, 34(29): 17.

[7] 张千, 包健, 宋腾飞, 刘慧娟. 基于Cortex的单相永磁无刷电机控制系统[J]. 微特电机, 2017, 45(3): 73-76.

[8] 余瑞容. 高压H桥电机驱动电路的研究与设计[D]. 西安: 西安电子科技大学,2019.

[9] 张洁, 何文涛, 刘亚. 集成多种PWM调制的直流无刷电机控制系统设计[J]. 电子设计工程, 2022, 30(1): 61-6570.

[10] 王其军, 杨坤, 苏占彪, 杨峰. 基于硬件FOC的无刷直流电机驱动器设计[J]. 传感器与微系统, 2021, 40(6): 89-91+94.

[11] 刘明浩. 基于DSP的无刷直流电动机驱动器的研制[D]. 哈尔滨: 哈尔滨工业大学, 2006.

[12] Orlowska-Kowalska T, Dybkowski M. Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1296-1308.

[13] Vogler B, Herzer R, Mayya I, et al. Integrated SOI gate driver for 1200V SiC-FET switches[C]// 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2016: 447-450.

[14] Huang C L, Wu C J, Yang S C. Full-Region Sensorless BLDC Drive for Permanent Magnet Motor using Pulse Amplitude Modulation with DC Current Sensing[J]. IEEE Transactions on Industrial Electronics, 2020,68(11): 11234-11244.

[15] 刘学. 无刷直流电机驱动芯片中部分子电路的分析与设计[D]. 成都: 电子科技大学, 2007.

[16] Chen Y T. Optimizing Efficiency Driver Comprising Phase-Locked Loop for the Single-Phase Brushless DC Fan Motor[J]. IEEE Transactions on Magnetics, 2012, 48(5): 1937-1942.

[17] Li T, Zhou J. High-Stability Position-Sensorless Control Method for Brushless DC Motors at Low Speed[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4895-4903.

[18] Biswas J, Nair M, Gopinath V, et al. An Optimized Hybrid SVPWM Strategy Based on Multiple Division of Active Vector Time (MDAVT)[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS PE, 2017, 32(6): 4607-4618.

[19] 陈智昕. 一种驱动三相马达的集成电路设计[D]. 成都: 电子科技大学, 2018.

[20] 周子馨. 单相无刷直流电机无传感器控制系统[D]. 杭州: 浙江大学, 2021.

[21] 方红伟, 陈奇, 王瑜. 无刷直流电机单相电感检测法无位置传感器控制[J]. 中国电机工程学报, 2022, 42(02): 783-796.

[22] Chen Y T, Chiu C L, Jhang Y R, et al. A Driver for the Single-Phase Brushless DC Fan Motor With Hybrid Winding Structure[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4369-4375.

[23] Mohammad A, Abedin M A, Khan M. Implementation of a three phase inverter for BLDC motor drive[C]// 2016 9th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2016: 337-340.

[24] 李光学, 孙宇伟, 徐志书, 等. 基于限流保护的高功率智能驱动模块设计[J]. 电子技术与软件工程, 2019, 26(13): 92-93.

[25] Gao J, Hu Y. Direct Self-Control for BLDC Motor Drives Based on Three-Dimensional Coordinate System[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2836-2844.

[26] Wagh A, Sheth N, Joshi J. Implementation of MOSFETs in a closed loop H-Bridge motor driver using charge pumps[C]// 2015 Annual IEEE India Conference (INDICON). IEEE, 2016: 1-5.

[27] Bellini B, Arnaud A, Rezk S, et al. An integrated H-bridge circuit in a HV technology[C]// 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS). IEEE, 2016: 331-334.

[28] Chun T W, Tran Q V, Lee H H, et al. Sensorless Control of BLDC Motor Drive for an Automotive Fuel Pump Using a Hysteresis Comparator[J]. IEEE Transactions on Power Electronics, 2013, 29(3): 1182-1391.

[29] Gougani M, Chapariha M, Jatskevich J, et al. Hall sensor-based Locking Electric Differential System for BLDC motor driven electric vehicles[C]// 2012 IEEE International Electric Vehicle Conference. IEEE, 2012: 1-7.

[30] Muthamizhan T, Stephen D S, Sivakumar A. ANFIS Controller based speed control of High-Speed BLDC Motor Drive[J]. Advances in Parallel Computing, 2020, 37(2020): 341-348.

[31] 刘伟. PWM 技术在电机驱动控制中的应用[D]. 合肥: 合肥工业大学, 2009.

[32] 费新华.基于PWM控制的直流电机驱动设计[J]. 数字技术与应用, 2012(11): 155-156.

[33] 孙瑞. PWM技术在电机驱动控制中的应用[J]. 科学技术创新, 2017, 0(28): 54-55.

[34] 余瑞容, 张启东. 一种应用于高压电机驱动的电平移位电路[J]. 电子科技, 2019,32(12): 11-16.

[35] 曹允, 何晓莹, 徐申. 功率驱动芯片高速开关引起的电源振荡现象研究[J]. 固体电子学研究与进展, 2014, 34(3): 280-287.

[36] 汪宁, 魏同立. 一种具有高电源抑制比的低功耗CMOS带隙基准电压源[J]. 微电子学, 2004, 34(3): 4.

[37] Singh K J, Mehra R, Hande V. Ultra Low Power, Trimless and Resistor-less Bandgap Voltage Reference[C]// 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2018: 292-296.

[38] Hongal R. Design of low voltage bandgap reference circuit using subthreshold MOSFET[C]// 2015 5th Nirma University International Conference on Engineering (NUiCONE). IEEE, 2015: 1-6.

[39] 吴霞, 鲍言锋, 邓婉玲, 黄君凯. 基于0.35um CMOS工艺的高温高压LDO芯片设计[J]. 电子技术应用, 2021, 47(12): 120-125.

[40] 佟星元, 李茂, 董嗣万. 一种快速响应无片外电容低压差线性稳压器[J]. 电子与信息学报, 2019, 41(11): 2592-2598.

[41] 王磊, 杨云, 许志斌, 陈萍, 甄少伟, 罗萍, 张波. 一种高电源噪声抑制比的LDO设计[J]. 微电子学, 2015, 0(5): 590-593+598.

[42] 申梦园, 刘云涛, 杨璐.一款高电源抑制比的LDO的设计[J]. 信息通信, 2020(3): 43-46.

[43] Hazucha P, Karnik T, Bloechel B, et al. An area-efficient, integrated, linear regulator with ultra-fast load regulation[C]// 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525). IEEE, 2004: 218-221.

[44] 张睿. 适用于LED常数电流驱动的高性能张驰振荡器的设计[D]. 湖北: 华中科技大学,2010.

[45] Dawes W H. The design of a family of high-current switches with over-current and over-temperature protection[J]. Instrumentation & Measurement IEEE Transactions on, 1998, 47(6): 1492-1502.

[46] 张明星, 朱铁柱, 王良坤. 一种用于马达驱动芯片的新型过温保护电路[J]. 电子器件, 2015, 38(2): 373-376.

[47] 徐冬, 唐祯安. 一种用于马达驱动芯片的过热保护电路[J]. 微电子学, 2007, 37(6): 903-906.

中图分类号:

 TN492    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式