- 无标题文档
查看论文信息

论文中文题名:

 含冰岩结构面冻结岩石动态力学特性及破坏机理研究    

姓名:

 秦越    

学号:

 19204209104    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 矿山岩体力学理论与应用    

第一导师姓名:

 王磊    

第一导师单位:

 西安科技大学    

第二导师姓名:

 宋立平    

论文提交日期:

 2022-06-13    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Study on Dynamic Mechanical Properties and Failure Mechanism of Frozen Rock with Ice-rock Structural Plane    

论文中文关键词:

 冻结岩石 ; 霍普金森压杆试验 ; 结构面 ; 应力波传播 ; 动力学特性    

论文外文关键词:

 Frozen rock ; Hopkinson compression bar test ; structural plane ; stress wave propagation ; dynamic characteristics    

论文中文摘要:

~西部矿井建设穿越深厚富水裂隙基岩,冻结凿井法是此类地层井筒掘砌最常用方案,冻结法形成的冻结壁是立井施工安全的重要保障。富水裂隙基岩在冻结条件下形成冰岩复合结构,由于冰和冻结岩石在爆破冲击作用下具有不同的动力学响应,施工过程中产生的爆破冲击波在改变冰岩结构面性质的同时会影响冻结岩体的整体稳定性。本文通过SHPB试验系统对含不同角度冰岩结构面的冻结岩石进行动态单轴冲击压缩试验,从应力波传播、动力学响应、能量耗散及破坏机理等多角度研究冰岩复合体界面损伤扩展过程和动力灾变机制,主要研究工作及结论如下:
(1)追踪分析应力波在岩-冰、冰-岩界面及结构面内部多次透反射路径,推导出应力波传递与衰减的应力量化表达式,并定义反射系数和透射系数分析变化规律。应力波穿越较大结构面角度时衰减明显,反射作用弱而透射能力强。结构面对应力波的削弱远大于应变率强化,低应变率时应力波穿越结构面的能力有限。应力波以极短时间在结构面间多次透反射而叠加,透反射系数降幅呈不稳定的波动状态。
(2)探究温度、应变率及结构面角度等因素对含冰岩结构面冻结岩石动力学特性的影响,应力波波动、动态应力-应变及峰值强度表现出明显的应变率强化效应和结构面劣化效应,率敏感性随着角度增大逐渐变弱,劣化效果随着气压上升逐渐增强,贯通结构面显著降低岩石的极限承载能力。
(3)从能量角度分析应力波传递机制,通过高速摄影图像和最终破坏形态总结岩石冲击损伤破坏过程。入射能、反射能及耗散能随应变率增加呈线性关系增长,透射能呈弱幂函数变化;随着结构面角度的增大,反射能变大而耗散能降低,透射保持低水平。0°试件低应变率下仅结构面内冰晶体压缩破坏而两端保持完整,15°、30°、45°试件沿结构面剪切滑移错动,大角度结构面引起岩体稳定性降低,有效分散冲击载荷作用力。
(4)含单结构面岩体破坏由内因(固有强度)和外因(外荷载)共同决定,受力变形特征受结构面方位和各部分强度共同控制,岩体强度与结构面的强度参数(黏聚力、摩擦角)和界面角度有关。失效破坏形式基于强度理论主要有冰层压缩、冰层剪断、冰岩压缩及冰岩压剪破坏,从冰的粘附强度理论可分为冰层剪断、冰岩界面脱离及复合方式破坏,影响因素有液态水含量(应变率)和界面压力(结构面角度)。
本文主要对应力波在冰岩结构面中的传播与衰减特征、含冰岩结构面冻结岩石的动力响应特性、能量耗散机制及破坏机理展开研究,相应研究成果可为富水裂隙岩层冻结参数设计提供参考,对西部矿区立井爆破掘砌设计和施工及围岩动力失稳事故的治理均有重要意义。

论文外文摘要:

~The mine construction of the western passes through the deep water rich fissure bedrock. The freezing shaft sinking method is the most commonly used scheme for shaft excavation in this kind of stratum. The frozen wall is an important guarantee for the safety of shaft construction. Water rich fractured bedrock forms ice-rock composite structure under freezing conditions. Due to ice and frozen rock have different dynamic responses under blasting shock, the blasting shock wave generated during construction will not only change the properties of ice-rock structural plane, but also affect the overall stability of frozen rock mass. In this paper, the dynamic uniaxial impact compression test of frozen rock with ice-rock structural plane at different angles is carried out by SHPB test system and the research is carried out from the perspectives of stress wave propagation, dynamic response, energy dissipation and failure mechanism. The main research work and conclusions are as follows:
(1)Trace and analyze the path of multiple reflection of stress wave at rock-ice, ice-rock interface and structural plane, deduce the stress expression of stress wave transmission and attenuation, and define the variation law of reflection coefficient and transmission coefficient. When the stress wave passes through a large structural plane angle, the attenuation is obvious, the reflection effect is weak and the transmission ability is strong. The weakening of stress wave on the structural plane is much greater than the strengthening of strain rate. At low strain rate, the ability of stress wave passing through the structural plane is limited. The stress wave is superimposed by multiple transmittance and reflection between structural planes in a very short time, and the decrease of transmittance and reflection coefficient is in an unstable fluctuation state.
(2)The effects of temperature, strain rate and structural plane angle on the dynamic characteristics of frozen rock with ice-rock structural plane are explored. The stress wave fluctuation, dynamic stress-strain and peak strength show obvious strain rate strengthening effect and structural plane deterioration effect. The rate sensitivity decreases gradually with the increase of angle, the deterioration effect increases gradually with the increase of air pressure, and the through structural plane significantly reduces the ultimate bearing capacity of rock.
(3)The transmission mechanism of stress wave is analyzed from the perspective of energy, and the process of rock impact damage is summarized combined with high-speed photographic images and final failure morphology. The incident energy, reflected energy and dissipated energy increase linearly with the increase of strain rate, and the transmission energy changes in a weak power function. With the increase of structural plane angle, the reflected energy increases, the dissipated energy decreases, and the transmission remains low. Under the low strain rate of 0° specimen, only the ice crystal in the structural plane is compressed and destroyed, and both ends remain intact. The 15°, 30° and 45° specimens shear slip and stagger along the structural plane. The large angle structural plane reduces the stability of rock mass and effectively disperses the force of impact load.
(4)The failure of rock mass with single structural plane is determined by internal factors (inherent strength) and external factors (external load). The stress and deformation characteristics are jointly controlled by the orientation of structural plane and the strength of each part. The strength of rock mass is related to the strength parameters (cohesion, friction angle) and interface angle of structural plane. Based on the strength theory, the failure modes mainly include ice compression, ice shear, ice rock compression and ice rock compression shear failure. From the ice adhesion strength theory, it can be divided into ice shear, ice rock interface separation and composite failure. The influencing factors are liquid water content (strain rate) and interface pressure (structural plane angle).
This paper mainly studies the propagation and attenuation characteristics of stress wave in ice rock structural plane, the dynamic response characteristics of frozen rock with ice rock structural plane, energy dissipation mechanism and failure mechanism. The corresponding research results can provide reference for the design of freezing parameters of water rich fractured rock stratum. It is of great significance to the design and construction of shaft blasting excavation in western mining area and the treatment of dynamic instability accidents of surrounding rock.

中图分类号:

 TU452    

开放日期:

 2022-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式