- 无标题文档
查看论文信息

论文中文题名:

 矿山采空区构建石油储库充填体蠕变特性及长期稳定性研究    

姓名:

 罗圆圆    

学号:

 21203226051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 固废处置与充填开采    

第一导师姓名:

 邱华富    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-21    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Study on creep characteristics and long-term stability of backfill body of oil storage based on coal mine goaf    

论文中文关键词:

 充填材料 ; 蠕变 ; 本构方程 ; 石油储库 ; 数值模拟 ; 稳定性研究    

论文外文关键词:

 Backfill material ; Creep ; Constitutive equation ; Oil storage ; Numerical simulation ; Investigation into stability    

论文中文摘要:

我国能源资源具有“富煤少油”的禀赋特点,近年来石油的对外依存度已超70%,导致战略石油储备不足,而原煤的产量居高不下。同时造成我国矿山空区体积逐年增加,煤基固废无法规模化处置等问题。为实现矿山采空区空间资源、煤基固废的合理利用和构建战略石油储备库的多重目的,提出了基于条带充填开采,构建地下充填石油储库的新方法。在储库长期运营过程中,充填作为重要结构单元,其蠕变性能是影响储库长期稳定的关键因素。本文选取以煤矸石为骨料,粉煤灰和水泥为胶凝材料的充填体作为研究对象,利用理论分析、室内试验和数值模拟手段,对充填体的蠕变特性及充填石油储库在长期载荷作用下的力学参数变化规律进行了深入分析。首先通过分级加载的方式对煤矸石胶结充填体进行单轴压缩蠕变试验,分析其蠕变力学特性;其次根据充填体蠕变应变-时间规律构建蠕变本构模型,验证了模型的可靠性,进一步定量化描述了充填体蠕变全过程;最后提出基于条带式充填开采构建地下石油储库方法,采用数值模拟手段分析储库围岩及充填体长期运营过程中的变化规律。研究主要结论如下:

(1)充填体力学强度与灰砂比呈正相关关系,灰砂比为1:4时,单轴抗压强度最高,为6.57Mpa。充填体弹性模量与灰砂比呈正相关关系,单轴抗压强度与弹性模量存在线性关系。

(2)开展了煤矸石胶结充填材料单轴压缩蠕变试验。利用分级加载的方式,研究煤矸石胶结充填体在的蠕变力学特性。充填体能够承载的应力加载级数随灰砂比减小先增大后减小,最大轴向应力随灰砂比减小而减小。

(3)煤矸石胶结充填体受到轴向应力后立即产生瞬时变形,瞬时变形大小随轴向应增加呈现增大趋势,随充填体的灰砂比增大呈减小趋势。充填体进入减速蠕变和等速蠕变阶段后,减速蠕变阶段持续时间和两阶段应变率同轴向应力为正相关关系,与灰砂比呈现负相关关系。

(4)建立了以Burgers蠕变模型为基础的改进蠕变模型,引入了弹塑性体和一个带应变触发的非线性黏壶,当σ<σs时,该模型退化为Burgers蠕变模型;当σ≥σs且e<ets时,该模型退化为六元件弹塑性蠕变模型;当σ≥σs且e≥ets时,该模型为七元件粘弹塑性蠕变模型。用改进模型对蠕变试验数据进行拟合,其相关系数均大于0.95,同时得到相关参数,可以很好的对煤矸石胶结充填材料的蠕变全过程进行描述。

(5)提出了煤矿基于条带充填开采的储库协同构建方法。利用有限差分软件Flac3D模拟了采矿-充填-建库过程,分析了考虑充填体蠕变特性的储库长期稳定性。结果表明条带式地下充填石油储库在建库和运营过程中均未发生破坏,充填体具有一定的长期稳定性,表明构建的储库可进行正常使用。

论文外文摘要:

China 's energy resources have the endowment characteristics of 'rich coal and less oil'. In recent years, the external dependence of oil has exceeded 70%, resulting in insufficient strategic oil reserves and high production of raw coal. At the same time, the volume of mine goafs in China has increased year by year, and coal-based solid waste cannot be disposed on a large scale. In order to realize the rational utilization of mine goaf space resources, coal-based solid waste and the multiple purposes of building a strategic oil reserve, a new method for constructing an underground backfill oil reserve based on strip backfill mining is proposed. During the long-term operation of the storage, backfill is an important structural unit, and its creep performance is a key factor affecting the long-term stability of the storage. In this paper, the backfill body with coal gangue as aggregate, fly ash and cement as cementitious materials is selected as the research object. By means of theoretical analysis, laboratory test and numerical simulation, the creep characteristics of backfill body and the variation law of mechanical parameters of backfill oil storage under long-term load are analyzed in depth. Firstly, the uniaxial compression creep test of cemented-gangue-fly-ash backfill (CGFB) was carried out by means of step loading, and its creep mechanical properties were analyzed. Secondly, the creep constitutive model is constructed according to the creep strain-time law of the backfill body, which verifies the reliability of the model and further quantitatively describes the whole creep process of the backfill body. Finally, the method of constructing underground oil storage based on strip backfill mining is proposed, and the variation law of surrounding rock and backfill body in the long-term operation process of storage is analyzed by numerical simulation. The main conclusions are as follows :

(1) The mechanical strength of the CGFB is positively correlated with the cement-sand ratio. When the cement-sand ratio is 1:4, the uniaxial compressive strength is the highest, which is 6.57Mpa. The elastic modulus of CGFB is positively correlated with the cement-sand ratio, and there is a linear relationship between the uniaxial compressive strength and the elastic modulus.

(2) The uniaxial compression creep test of CGFB was carried out. The creep mechanical properties of CGFB were studied by means of graded loading. The stress loading series that the backfill body can bear increases first and then decreases with the decrease of cement-sand ratio, and the maximum axial stress decreases with the decrease of cement-sand ratio.

(3) CGFB produces instantaneous deformation immediately after being subjected to axial stress. The instantaneous deformation increases with the increase of axial stress, and decreases with the increase of cement-sand ratio of backfill body. After the backfill body enters the deceleration creep and constant creep stages, the duration of the deceleration creep stage is positively correlated with the coaxial stress of the two-stage strain rate, and negatively correlated with the cement-sand ratio.

(4) An improved creep model based on Burgers creep model is established. The elastoplastic body and a nonlinear dashpot with strain are introduced. At σ<σs time, the model degenerates into Burgers creep model. When σ≥σs and e<ets, the model degenerates into a six-element elastic-plastic creep model. When σ≥σs and e≥ets, the model is a seven-element viscoelastic-plastic creep model. The improved model is used to fit the creep test data, and the correlation coefficient is greater than 0.95. At the same time, the relevant parameters are obtained, which can well describe the whole process of creep of CGFB

(5) A collaborative construction method of reservoir based on strip backfill mining is proposed. The finite difference software Flac3D was used to simulate the mining-backfill-reservoir construction process, and the long-term stability of the reservoir considering the creep characteristics of the backfill body was analyzed. The results show that the strip underground backfill oil storage has not been damaged during the construction and operation of the storage, and the backfill body has a certain long-term stability, indicating that the constructed storage can be used normally.

参考文献:

[1] Lin J, Fridley D, Lu H, et al. Has coal use peaked in China: Near-term trends in China’s coal consumption[J]. Energy Policy, 2018, 123: 208–214.

[2] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6): 1625–1636.

[3] 翟晋忠. 废弃煤矿资源及赋存特征探讨[J]. 中国煤炭地质, 2021, 33(5): 16–19.

[4] 李百宜, 张吉雄, 刘恒凤, 等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报, 2022, 39(6): 1161-1168+1176.

[5] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1): 45–60.

[6] 谢和平, 高明忠, 张茹, 等. 地下生态城市与深地生态圈战略构想及其关键技术展望[J]. 岩石力学与工程学报, 2017, 36(6): 1301–1313.

[7] 袁亮, 姜耀东, 王凯, 等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 2018, 43(1): 14–20.

[8] 张华林, 滕泽栋, 江晓亮, 等. 废弃煤矸石资源化利用研究进展[J]. 环境化学, : 1–14.

[9] 蔡峰, 刘泽功, 林柏泉, 等. 淮南矿区煤矸石中微量元素的研究[J]. 煤炭学报, 2008(8): 892–897.

[10] 孙好想, 李晓昭, 卞夏, 等. 金属非金属矿山地下空间现状及开发利用研究[J]. 地下空间与工程学报, 2022, 18(2): 375–385.

[11] 姜玉松. 矿业城市废弃矿井地下工程二次利用[J]. 中国矿业, 2003(2): 61–64.

[12] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018, 43(6): 1487–1503.

[13] Secondary utilizations and perspectives of mined underground space[J]. Tunnelling and Underground Space Technology, Pergamon, 2020, 96: 103129.

[14] 毕忠伟, 丁德馨, 张新华. 地下采空区合理利用综述[J]. 地下空间与工程学报, 2005(S1): 102–105.

[15] 谢和平, 高明忠, 高峰, 等. 关停矿井转型升级战略构想与关键技术[J]. 煤炭学报, 2017, 42(6): 1355–1365.

[16] 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(5): 1210–1219.

[17] 王金华, 谢和平, 刘见中, 等. 煤炭近零生态环境影响开发利用理论和技术构想[J]. 煤炭学报, 2018, 43(5): 1198–1209.

[18] 袁亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报(社会科学版), 2018, 20(1): 3–12.

[19] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1–6.

[20] 陈永春, 袁亮, 徐翀. 淮南矿区利用采煤塌陷区建设平原水库研究[J]. 煤炭学报, 2016, 41(11): 2830–2835.

[21] 刘峰, 李树志. 我国转型煤矿井下空间资源开发利用新方向探讨[J]. 煤炭学报, 2017, 42(9): 2205–2213.

[22] 邱华富, 刘浪, 张波, 等. 矿山采空区超前管理与协同利用模式探索[J]. 技术与创新管理, 2020, 41(6): 625–630.

[23] 邱华富, 刘浪, 王美, 等. 金属矿采矿-充填-建库协同系统及充填储库结构[J]. 石油学报, 2018, 39(11): 1308–1316.

[24] Sun Z, Zhao Y, Ren J. Regional development potential of underground pumped storage power station using abandoned coal mines: A case study of the Yellow River Basin, China[J]. Journal of Energy Storage, 2024, 77: 109992.

[25] Cui C-Q, Wang B, Zhao Y-X, et al. Waste mine to emerging wealth: Innovative solutions for abandoned underground coal mine reutilization on a waste management level[J]. Journal of Cleaner Production, 2020, 252: 119748.

[26] 鲁永祥, 赵杨阳. 煤矸石-粉煤灰混合充填材料配比研究[C]. 中国环境科学学会2022年科学技术年会-环境工程技术创新与应用分会场论文集(四).北京:中国环境科学学会环境工程分会, 2022: 647–650.

[27] 周翔, 齐红军, 张笃学, 等. 煤矸石充填材料配比试验研究[J]. 采矿技术, 2020, 20(1): 33-35+39.

[28] 顾清恒, 刘学生, 宁建国, 等. 煤矸石似膏体充填材料配比优化研究[J]. 矿业研究与开发, 2016, 36(1): 33–37.

[29] 黄晓鹏, 盖鹏艳. 煤矸石制充填材料配比试验探究[J]. 煤矿现代化, 2021, 30(6): 107–109.

[30] 张庆松, 李恒天, 李召峰, 等. 不同粒径组合对煤矸石基充填材料性能的影响[J]. 金属矿山, 2020(1): 73–80.

[31] Yang Y, Lai X, Zhang Y, et al. Strength deterioration and energy dissipation characteristics of cemented backfill with different gangue particle size distributions[J]. Journal of Materials Research and Technology, 2023, 25: 5122–5135.

[32] 舒安东, 周雄, 邓代强, 等. 煤矸石充填骨料级配优化实验研究[J]. 化工矿物与加工, 2021, 50(7): 5-8+13.

[33] Gao W-C, Zhang X-L, Du G-Z, et al. Shrinkage model for concrete incorporating coal gangue coarse and fine aggregates[J]. Journal of Building Engineering, 2023: 107865.

[34] Zhang T, Wen Q, Gao S, et al. Comparative study on mechanical and environmental properties of coal gangue sand concrete[J]. Construction and Building Materials, 2023, 400: 132646.

[35] Cheng Y, Shen H, Zhang J. Understanding the effect of high-volume fly ash on micro-structure and mechanical properties of cemented coal gangue paste backfill[J]. Construction and Building Materials, 2023, 378: 131202.

[36] Wu H, Kang S, Zhang H, et al. Research of the workability, mechanical and hydration mechanism of coal gangue-construction solid waste backfilling materials[J]. Construction and Building Materials, 2023, 408: 133833.

[37] Yin S, Yan Z, Chen X, et al. Effect of fly-ash as fine aggregate on the workability and mechanical properties of cemented paste backfill[J]. Case Studies in Construction Materials, 2022, 16: e01039.

[38] Zhao Y, Guo Y, Feng G, et al. Study on strength and deformation characteristics of cemented gangue backfill body under the coupling action of load and salt erosion[J]. Construction and Building Materials, 2022, 342: 128003.

[39] 张佳飞, 王开, 张小强, 等. 膏体充填材料在残采巷道支护中的蠕变特性分析[J]. 矿业研究与开发, 2018, 38(3): 95–99.

[40] 陈绍杰, 朱彦, 王其锋, 等. 充填膏体蠕变宏观硬化试验研究[J]. 采矿与安全工程学报, 2016, 33(2): 348–353.

[41] 冉洪宇, 郭育霞, 冯国瑞, 等. 分级加载下矸石胶结充填材料蠕变特性研究[J]. 矿业研究与开发, 2020, 40(2): 42–47.

[42] 刘鼎, 许军策, 浦海. 不同含水率下矸石胶结充填体蠕变特性试验研究[J]. 采矿与安全工程学报, 2021, 38(5): 1055–1062.

[43] Sun Q, Li B, Tian S, et al. Creep properties of geopolymer cemented coal gangue-fly ash backfill under dynamic disturbance[J]. Construction and Building Materials, 2018, 191: 644–654.

[44] Hou J, Guo Z, Li J, et al. Study on triaxial creep test and theoretical model of cemented gangue-fly ash backfill under seepage-stress coupling[J]. Construction and Building Materials, 2021, 273: 121722.

[45] 邓代强, 杨耀亮, 姚中亮. 拉压全过程充填体损伤演化本构方程研究[J]. 采矿与安全工程学报, 2006(4): 485–488.

[46] 赵奎, 王晓军, 刘洪兴, 等. 布筋尾砂胶结充填体顶板力学性状试验研究[J]. 岩土力学, 2011, 32(1): 9-14+20.

[47] 林卫星, 柳小胜, 欧任泽. 充填体单轴压缩蠕变特性试验研究[J]. 矿冶工程, 2015, 35(5): 1–3.

[48] 赵树果, 苏东良, 邹威. 充填体分级加载蠕变试验及模型参数智能辨识[J]. 矿业研究与开发, 2016, 36(6): 54–57.

[49] Ran H, Guo Y, Feng G, et al. Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area[J]. International Journal of Mining Science and Technology, 2021, 31(3): 401–412.

[50] 胡斌, 曹建军, 王泽祺, 等. 冲击扰动下泥页岩剪切蠕变试验及蠕变损伤模型研究[J]. 煤炭学报, : 1–10.

[51] Yang C, Daemen J J K, Yin J-H. Experimental investigation of creep behavior of salt rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 233–242.

[52] 曹树刚, 边金, 李鹏. 岩石蠕变本构关系及改进的西原正夫模型[J]. 岩石力学与工程学报, 2002(5): 632–634.

[53] 曹树刚, 边金, 李鹏. 软岩蠕变试验与理论模型分析的对比[J]. 重庆大学学报(自然科学版), 2002(7): 96–98.

[54] 何峰, 王来贵, 于永江, 等. 岩石试件非线性蠕变模型及其参数确定[J]. 辽宁工程技术大学学报, 2005(2): 181–183.

[55] 孙琦, 张向东, 杨逾. 膏体充填开采胶结体的蠕变本构模型[J]. 煤炭学报, 2013, 38(6): 994–1000.

[56] 郭皓, 刘音, 崔博强, 等. 充填膏体蠕变损伤模型研究[J]. 矿业研究与开发, 2018, 38(3): 104–108.

[57] Li M, Zhang J, Meng G, et al. Testing and modelling creep compression of waste rocks for backfill with different lithologies[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104170.

[58] Wang G. A new constitutive creep-damage model for salt rock and its characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 61–67.

[59] 郭瑞凯, 丁建华, 赵奎, 等. 充填体的分数阶微积分蠕变本构模型及其在FLAC~(3D)中的开发应用[J]. 中国钨业, 2017, 32(5): 27–31.

[60] 韩伟, 赵树果, 苏东良, 等. 全尾砂充填体蠕变性能试验及数值模拟研究[J]. 化工矿物与加工, 2017, 46(8): 53–56.

[61] 赵奎, 何文, 熊良宵, 等. 尾砂胶结充填体蠕变模型及在FLAC~(3D)二次开发中的实验研究[J]. 岩土力学, 2012, 33(S1): 112–116.

[62] 周睿. 沿空留巷充填体蠕变特性数值模拟[J]. 煤矿安全, 2018, 49(3): 218–221.

[63] Guo L, Chen Q, Wu Y, et al. Numerical simulation of adjacent stope interaction and parametric analysis of the creep behavior of rock mass[J]. Journal of Materials Research and Technology, 2022, 19: 2063–2076.

[64] Dummer A, Smaniotto S, Hofstetter G. Experimental and numerical study on nonlinear basic and drying creep of normal strength concrete under uniaxial compression[J]. Construction and Building Materials, 2023, 362: 129726.

[65] 杨文东, 张强勇, 张建国, 等. 基于FLAC~(3D)的改进Burgers蠕变损伤模型的二次开发研究[J]. 岩土力学, 2010, 31(6): 1956–1964.

[66] 薛辉, 韩春元, 肖博雅, 等. 合理矿柱宽度下盐穴双储库腔体的稳定性分析[J]. 油气储运, 2021, 40(7): 753–760.

[67] 许宏发, 王武, 方秦, 等. 岩盐椭球储气库应力解析及其稳定性分析[J]. 应用基础与工程科学学报, 2012, 20(6): 1137–1146.

[68] 刘建平, 姜德义, 陈结, 等. 盐岩水平储气库的相似模拟建腔和长期稳定性分析[J]. 重庆大学学报, 2017, 40(2): 45–51.

[69] 郤保平, 赵阳升. 层状盐岩溶腔储气库长期运行稳定性研究[J]. 地下空间与工程学报, 2007(S2): 1562–1567.

[70] Abdollahipour A, Ghannadshirazi H. Stability analysis and determination of rock pillar between two adjacent caverns in different regions of Asmari formation in Iran[J]. International Journal of Mining Science and Technology, 2014, 24(5): 593–596.

[71] Fuenkajorn K, Archeeploha S. Prediction of cavern configurations from subsidence data[J]. Engineering Geology, 2010, 110(1–2): 21–29.

[72] Li J, Shi X, Zhang S. Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns[J]. Energy, 2020, 203: 117840.

[73] Zhang Q Y, Duan K, Jiao Y Y, et al. Physical model test and numerical simulation for the stability analysis of deep gas storage cavern group located in bedded rock salt formation[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 94: 43–54.

[74] 张桂民, 王贞硕, 刘俣轩, 等. 水平盐穴中压气蓄能储库关键顶板稳定性研究[J]. 岩土力学, 2021, 42(3): 800–812.

[75] 王贞硕. 层状盐岩中水平腔压气蓄能储库顶板稳定性研究[D]. 中国矿业大学, 2020.

[76] Zhang G, Zhang H, Liu Y, et al. Surrounding rock stability of horizontal cavern reconstructed for gas storage[J]. Journal of Energy Storage, 2023, 59: 106534.

[77] Wang Y, Zhang X, Jiang D, et al. Study on stability and economic evaluation of two-well-vertical salt cavern energy storage[J]. Journal of Energy Storage, 2022, 56: 106164.

[78] 白雪, 姜德义, 刘伟, 等. 储库布置方式对层状盐岩水平储油库群稳定性的影响[J]. 油气储运, 2022, 41(9): 1069–1078.

[79] 刘耀儒, 李波, 杨强, 等. 岩盐地下油气储库群稳定分析及连锁破坏的地质力学模型试验[J]. 岩石力学与工程学报, 2012, 31(S2): 3681–3687.

[80] 王其宽, 张彬, 王汉勋, 等. 内衬式高压储气库群布局参数优化及稳定性分析[J]. 工程地质学报, 2020, 28(5): 1123–1131.

[81] Zhang Q Y, Duan K, Jiao Y Y, et al. Physical model test and numerical simulation for the stability analysis of deep gas storage cavern group located in bedded rock salt formation[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 94: 43–54.

[82] 韩运, 刘钦节. 废弃矿井地下空间资源开发利用评价指标体系研究[J]. 煤炭经济研究, 2022, 42(5): 53–57.

[83] 姜德义, 霍琰, 任松, 等. 灰色理论在盐岩储气库稳定性评价中的应用[J]. 中国矿业, 2011, 20(3): 122–125.

[84] 任松, 李小勇, 姜德义, 等. 盐岩储气库运营期稳定性评价研究[J]. 岩土力学, 2011, 32(5): 1465–1472.

[85] Deng J Q, Yang Q, Liu Y R, et al. Stability evaluation and failure analysis of rock salt gas storage caverns based on deformation reinforcement theory[J]. Computers and Geotechnics, 2015, 68: 147–160.

[86] 唐子茜, 姜德义, 陈结, 等. 小井间距双井盐穴储库稳定性综合评价研究[J]. 地下空间与工程学报, 2021, 17(6): 1997–2006.

[87] Goh A T C, Zhang W. Reliability assessment of stability of underground rock caverns[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55: 157–163.

[88] 周家惠, 楚泽涵, 乔文孝. 一种估算岩石弹性模量的方法[C]. 第三届全国岩石动力学学术会议论文选集. 北京:中国岩石力学与工程学会岩石动力学专业委员会, 1992: 3.

[89] 徐达. 红层岩石蠕变特性及其非线性本构模型研究[D]. 西南交通大学, 2017.

[90] 武东生, 孟陆波, 李天斌, 等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016, 37(S1): 183–191.

[91] 史为政, 许晓亮, 黄天柱, 等. 不同初始应力下软岩卸荷蠕变试验及长期强度[J]. 科学技术与工程, 2022, 22(26): 11577–11584.

[92] 吴斐, 谢和平, 刘建锋, 等. 分数阶黏弹塑性蠕变模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 964–970.

[93] 蒋昱州, 徐卫亚, 王瑞红. 角闪斜长片麻岩流变力学特性研究[J]. 岩土力学, 2011, 32(S1): 339–345.

[94] 沈明荣, 谌洪菊, 张清照. 基于蠕变试验的结构面长期强度确定方法[J]. 岩石力学与工程学报, 2012, 31(1): 1–7.

[95] 王军保, 刘新荣, 宋战平, 等. 基于反S函数的盐岩单轴压缩全过程蠕变模型[J]. 岩石力学与工程学报, 2018, 37(11): 2446–2459.

[96] 徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J]. 岩石力学与工程学报, 2006(3): 433–447.

[97] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347–355.

[98] 杨圣奇. 岩石流变力学特性的研究及其工程应用[D]. 河海大学, 2006.

[99] Li M, Zhang J, Meng G, et al. Testing and modelling creep compression of waste rocks for backfill with different lithologies[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104170.

[100]王海龙, 郭惟嘉, 陈绍杰, 等. 煤矿充填膏体力学性质试验研究[J]. 矿业研究与开发, 2012, 32(4): 8-10+50.

[101]陈绍杰, 朱彦, 王其锋, 等. 充填膏体蠕变宏观硬化试验研究[J]. 采矿与安全工程学报, 2016, 33(2): 348–353.

[102]Wen B, Huang D, Zhang L, et al. Study on mechanical properties and size effect of coal gangue concrete at mesoscale[J]. Construction and Building Materials, 2022, 360: 129551.

[103]樊海艳, 郭忠平, 黄万朋. 矸石胶结充填体力学性能实验研究[J]. 煤矿开采, 2015, 20(6): 83-86+66.

[104]吴文, 侯正猛, 杨春和. 盐岩中能源(石油和天然气)地下储存库稳定性评价标准研究[J]. 岩石力学与工程学报, 2005(14): 2497–2505.

[105]丁国生, 杨春和, 张保平, 等. 盐岩地下储库洞室收缩形变分析[J]. 地下空间与工程学报, 2008(1): 80–84.

中图分类号:

 TD823.7    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式