- 无标题文档
查看论文信息

题名:

 基于最大输出功率的本安LC-Buck变换器优化设计    

作者:

 郝雨蒙    

学号:

 19206029017    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 本质安全电路与装置    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2022-06-27    

答辩日期:

 2022-06-07    

外文题名:

 Optimal Design of Intrinsically Safe LC-Buck Converter Based on Maximum Output Power    

关键词:

 LC-Buck变换器 ; LC滤波 ; 最大功率 ; 本质安全    

外文关键词:

 LC-Buck Converter ; LC Filter ; Maximum Power ; Intrinsic Safety    

摘要:

    随着应用于爆炸性开采环境的监控、通信电气设备日趋增多,对矿用本质安全开关电源的输出功率提出了更高的要求,为此,本文提出了一种输出附加LC滤波的大功率本安Buck变换器(以下简称LC-Buck),仅使用较小的电感和电容值便能实现本质安全,并提出一种基于最大输出功率的元件参数优化设计方法,对于研制大功率本安电源具有重要指导意义。
    本文通过深入研究LC-Buck变换器电路结构、工作原理、能量传输过程,得到其各工作模式下输出纹波电压及峰值电感电流表达式;为使得变换器电流应力低、输出纹波电压小且电感电流不出现倒灌,确定出最佳工作模式,并分析该模式下输出纹波电压及峰值电感电流与输入电压、负载电阻等参数间的变化关系;根据变换器不同开关状态及分断位置,探究了其最危险分断放电工况,并针对最危险工况,研究了变换器的分断放电特性;分析了变换器分断放电能量,并结合能量等效原理及简单电感电路临界点燃曲线,得出LC-Buck变换器的非爆炸性内部本安判据,基于此判据推导得出满足本安性能要求的最大电感;以电气性能指标最佳为依据,推导出最小电感和两级滤波储能元件最佳比例系数;分析指出,同时满足电气性能指标及本安要求的电感取值范围随负载取值的减小而变小,因此,定义电感最大值与最小值相等时所对应的负载电阻为其最小负载电阻,据此得出了LC-Buck变换器最大输出功率表达式;分析了现有变换器元件参数设计方法存在的问题,提出了基于最大输出功率和最佳工作模式的本安LC-Buck变换器优化设计方法,并给出不同条件下的参数设计流程。
    根据所得出的优化设计方法,研制了本安LC-Buck变换器试验样机,测试了其电气性能,并在IEC安全火花试验平台上进行爆炸性试验,结果验证了理论分析的正确性及优化设计方法的可行性。

外文摘要:

    With the increasing number of monitoring and communication electrical equipment used in explosive mining environments, higher requirements are placed on the output power of mining intrinsically safe switching power supplies. Therefore, this paper proposes a high-power intrinsically safe output with additional LC filtering. Buck converters (hereinafter referred to as LC-Bucks) can achieve intrinsic safety by using only small inductance and capacitance values, and a method for optimizing the design of component parameters based on the maximum output power is proposed, which is of great importance for the development of high-power intrinsically safe power supplies.
    In this paper, through in-depth study of the circuit structure, working principle and energy transfer process of the LC-Buck converter, the expressions of the output ripple voltage and peak inductor current in each working mode are obtained. The inductor current is not back-flowed, the best working mode is determined, and the relationship between the output ripple voltage and peak inductor current and the input voltage, load resistance and other parameters in this mode is analyzed; according to the different switching states and breaking positions of the converter, explore The most dangerous breaking and discharging working condition is analyzed, and the breaking and discharging characteristics of the converter are studied on the premise of the most dangerous working condition; The non-explosive internal intrinsic safety criterion of the LC-Buck converter is derived. Based on this criterion, the maximum inductance that meets the requirements of intrinsic safety performance is derived. Based on the best electrical performance index, the minimum inductance and two-stage filter energy storage are derived. The best proportional coefficient of the component; the analysis points out that the inductance value range that meets the electrical performance indicators and intrinsic safety requirements at the same time decreases with the decrease of the load value. Therefore, define the corresponding load resistance when the maximum value and the minimum value of the inductance are equal. Based on the minimum load resistance, the expression of the maximum output power of the LC-Buck converter is obtained. The defects of the existing converter component parameter design methods are analyzed, and the intrinsic safety based on the maximum output power and the best working mode is proposed. The optimal design method of LC-Buck converter is given, and the parameter design process under different conditions is given.
    According to the optimal design method obtained, a test prototype of intrinsically safe LC-Buck converter was developed, and its electrical performance was tested. The explosion test was carried out on the IEC safety spark test platform. The results verified the correctness of the theoretical analysis and the optimal design method. feasibility.

参考文献:

[1]马龙. 5G设备煤矿井下电源供电技术[J]. 煤矿安全, 2020, 51(05): 111-113.

[2]段庆, 张红娟, 高妍等. 矿用本质安全型超声测距系统[J]. 煤炭技术, 2022, 41(03): 181-183.

[3]张立亚. 基于5G通信的矿山可视化智能监控技术[J]. 煤炭技术, 2022, 41(01): 191-194.

[4]GB 3846-2010. 国家防爆电气标准汇编(第二分册)[S]. 河南: 南阳防爆电气研究所, 2011.

[5]刘树林, 刘健. 本质安全开关变换器[M]. 北京: 科学出版社, 2008.

[6]刘树林, 马一博, 文晓明等. 输出本安Buck-Boost变换器的最危险输出短路火花放电工况研究[J]. 电工技术学报, 2015, 30(14): 253-260.

[7]赵永秀, 晏铭, 王骑. Buck-Boost变换器内部分断放电引燃能力及评价方法[J]. 西安科技大学学报, 2022, 42(01): 160-167.

[8]李艳, 刘树林, 吴浩等. 基于基波纹波比的大功率本安Buck变换器的设计[J]. 科学技术与工程, 2020, 20(20): 8218-8223.

[9]Chung Chie fang. Prediction of subharmonic oscillation in I2 controlled Buck converters in CCM[J]. IEEE Transactions on Power Electronics, 2015, 30(07): 4035-4036.

[10]陈慧丽, 李杰. 矿用本安电源开关变换器滤波电容消解方案[J]. 工矿自动化, 2020, 46(04): 109-112

[11]李艳, 刘树林. 改进型本安Buck变换器的分析与设计[J]. 西安科技大学学报, 2019, 39(02): 360-365.

[12]成林, 欧宏, 毕闯等. 基于SiC MOSFET的同步Buck变换器电磁干扰噪声分析及预测[J]. 电工技术学报, 2021, 36(S2): 627-634.

[13]刘健, 刘树林, 杨银玲等. Buck变换器的输出本质安全特性分析及优化设计[J]. 中国电机工程学报, 2005, 25(19): 52-57.

[14]刘树林, 祁俐俐. Buck变换器的等效简单电感电路及内部本安判据[J]. 西安科技大学学报, 2016, 36(03): 434-439.

[15]张希, 张中伟, 王天石等. 基于权重配置的多环路COT控制Buck变换器瞬态性能优化[J]. 电工电能新技术, 2022, 41(03): 1-7.

[16]白正杨, 甄少伟, 胡怀志等. 基于自适应频率DPWM的数字控制Buck变换器[J]. 微电子学, 2021, 51(06): 860-865.

[17]查雯婷, 栗疆堡, 于志超等. 非理想条件下DC-DC Buck开关变换器的自适应控制[J].控制工程, 2020, 27(S1): 19-24.

[18]Tirumalasetti, Mahesh Babu, Manthati, Udaya Bhasker et al. A Novel Predictive Control Scheme for Interleaved Buck Converter in Low Power Applications [J]. Distributed Generation and Alternative Energy Journal, 2022, 37(03): 609-630.

[19]高珊珊, 王懿杰, 徐殿国. 一种高频高升压比改进型Sepic变换器[J]. 电工技术学报, 2019(16): 3366-3372.

[20]高志风, 欧阳名三. 矿用隔爆兼本安型不间断直流电源[J]. 煤矿机械, 2013(02): 157-159.

[21]Do-Hyun K, Joung-Hu P, et al. High efficiency High-Step-up Single-ended dc–dc converter with small output voltage ripple[J]. Journal of Power Electronics, 2015, 15(06): 1468-1479.

[22]Kumar S S, Panda A K, Ramesh T. A ZVT-ZCT PWM synchronous buck converter with a simple passive auxil-iary circuit for reduction of losses and efficiency enhancement[J]. Ain Shams Engineering Journal, 2016, 06(02): 491-500.

[23]Dasika D, Bahrani B. Multivariable control of single inductor dual-output buck converters[J]. IEEE Transactions on Power Electronics, 2015, 290(4): 2061-2070.

[24]Hyosung Kim. Arcing characteristics on low-voltage DC circuit breakers[C]// European Conference on Power Electronics and Application, Lille, 2017, 1-7.

[25]Naveed Ahmad, Yang Huijun, Shao Yuyan. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries[J]. Advanced Materials, 2019, 31(36). 11-12.

[26]Pak O. Ya, Yakich T. Yu, Kokorina. Synthesis of Crystalline Tungsten Carbide Phases under the Influence of Atmospheric Electrical Arc Plasma on Tungsten Oxide[J]. Materials, 2021, 43(03): 191-197.

[27]Nguyen, Hoai Van T. High-voltage and intrinsically safe supercapacitors based on a trimethyl phosphate electrolyte[J]. Journal of Materials Chemistry, 2021, 09(36): 20725-20736.

[28]Singh Jitendra Kumar, Banerjee Gautam, Singh, Arvind Kumar. Modelling of design parameters of intrinsically safe instruments for the safety of oil, gas and coal industries[J]. International Journal of Oil, 2019, 22(03): 417-431,

[29]Xianlei Xu, Zheng Ma, Tao Sun. A whole closed space intrinsically safe GPR system for detection of geological hazard sources in coal mines[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(09): 11-15.

[30]H. Llord, M. Eg. The use of break-flash apparatus No.3 for intrinsic safety testing[J]. SMRE. 2021, 26(33): 26.

[31]Kim CE, Yang DK, Lee JB. High-efficiency two-inductor PFC Boost converter employing SPDT relay[J]. IEEE Transactions on Power Electronics, 2017, 66(30): 2901-2904.

[32]Melek, Pasini Melek, Luiz Alberto. Analysis and design of the classical CMOS schmitt trigger in subthreshold operation[C]// IEEE Transactions on circuits and system i-regular papers, 2016.

[33]Yiliu. Safety barriers: Research advances and new thoughts on theory, engineering and management[J]. Journal of Loss Prevention in the Process Industries, 2020, 67(07): 405-410.

[34]Oancea, Domnina Razus, V. Munteanu. High voltage and break spark ignition of propylene/air mixtures at various initial pressures[J]. Journal of Loss Prevention in the process industries, 2019, 22(16): 353-361.

[35]燕斌. 煤矿井下矿用本安型钻机开孔定向仪的研制[J]. 仪表技术与传感器, 2021, 460(05): 63-66.

[36]邹德东, 刘鹏. 基于容量及保护时间可调的矿用本安电源[J]. 煤矿安全, 2021, 52(07): 103-106.

[37]赵永秀, 王骑, 王瑶等. 爆炸性环境电感分断放电引燃能力及本安性能评价方法[J]. 煤炭学报, 2020, 45(S2): 867-874.

[38]刘树林, 钟久明, 樊文斌等. 电容电路短路火花放电特性及其建模研究[J]. 煤炭学报, 2012, 37(12): 2123-2128.

[39]杨玉岗, 李龙华. 交错并联磁集成Buck变换器的本安特性分析及优化设计[J]. 电工电能新技术, 2014, 32(03): 7-11.

[40]刘树林, 马一博, 文晓明等. 输出本安Buck-Boost变换器的最危险输出短路放电工况研究[J]. 电工技术学报, 2016, 30(14): 253-260.

[41]柳玉磊, 周俊鹏, 甘梅等. 基于MATLAB的本安元件计算机评定方法[J]. 煤矿现代化, 2021, 30(06): 90-94.

[42]王玉婷, 刘树林, 马一博. 简单电容电路临界点燃电压曲线的数值化研究[J]. 电工技术学报, 2014, 29(01): 345-350.

[43]孟庆海, 牟龙华, 王崇林等. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(03): 292-294.

[44]杨玉岗, 祁鳞, 吴建鸿. 三相交错并联磁集成Boost变换器的内部本质安全特性[J]. 电工技术学报, 2014, 29(04): 54-62.

[45]刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.

[46]赵宏. 基于GA的BP神经网络在本安参数评定中的应用[J]. 自动化仪表, 2011, 32(04): 29-35.

[47]孟庆海, 田媛. 本质安全电路模拟储能元件潜在危险性分析及其本质安全判据[J]. 电工技术学报, 2021, 22(3): 1-10.

[48]商立群, 贾文胜, 施围. 提高本质安全电感电路功率的方法[J]. 工矿自动化, 2003(06): 20-21.

[49]商立群. 本质安全电路及其研究[J]. 仪器仪表学报, 2002, 23(02): 817-818.

[50]谢晓春, 汪淳, 俞喆. 增大本安电源容量方法的探讨[J]. 爆炸性环境电气防爆技术, 1988(02): 17-18.

[51]孟庆海, 李帅, 焦政国. 一种基于动态电弧识别及关断技术的截流型保护电路[J]. 电气技术, 2019, 20(07): 23-27.

[52]程红, 王聪, 葛标等. 输出本安型准Z源Buck变换器CCM模式小信号建模与控制[J]. 电工技术学报, 2013, 28(3): 222-227.

[53]于月森, 戚文艳, 伍小杰. 软火花电路的本安特性及优化分析[J]. 煤炭学报, 2015, 39(10): 2134-2140.

[54]孟庆海, 李帅, 焦政国. 一种基于动态电弧识别及关断技术的截流型保护电路[J]. 电气技术, 2019, 20(07): 23-27.

[55]于月森, 柳军停, 修俊瑞等. 截止型EC电路火花放电模型及其特性分析[J]. 煤炭学报, 2016, 41(09): 2380-2387.

[56]Udo Dr-Ing Gerlach, Johann Smyer. "Power-i", a significantly improved approach to explosion protection by Intrinsic Safety "i"[C]// Petroleum and Chemical Industry Conference Europe (PCIC Europe). Berlin, Germany, 2016: 195-204.

[57]张勋, 王广柱, 王婷. 双向全桥DC-DC变换器基于电感电流应力的双重移相优化控制[J]. 电工技术学报, 2016, 31(22): 100-106.

[58]伍家驹, 况清龙, 汤定德. 两级LC直流滤波器的四维可视化设计[J]. 电力电子技术, 2019, 44(01): 11-13.

[59]任堰牛, 何玮, 李杰等. 一种Buck输出纹波比的简化计算及设计方法[J]. 电源学报, 2019, 17(04): 44-49.

[60]刘树林, 郝雨蒙, 李艳等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报, 2021, 36(03): 542-551.

中图分类号:

 TM46    

开放日期:

 2026-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式