- 无标题文档
查看论文信息

论文中文题名:

 ZIFs衍生氮气还原碳基催化剂构筑及性能研究    

姓名:

 卫博慧    

学号:

 21313105002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0703    

学科名称:

 理学 - 化学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学    

研究方向:

 电催化    

第一导师姓名:

 梁耀东    

第一导师单位:

 西安科技大学    

第二导师姓名:

 李远刚    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Design and Performance Research of Nitrogen Reduction Reaction Carbon-Based Catalysts Derived from ZIFs    

论文中文关键词:

 氮还原 ; 沸石咪唑酯骨架 ; 电催化 ; 元素掺杂 ; 多孔碳    

论文外文关键词:

 Nitrogen reduction ; Zeolitic imidazolate frameworks ; Electrocatalysis ; Elemental doping ; Porous carbon    

论文中文摘要:

 

       氨作为一种无碳能源载体,工业上采用Harbor-Bosch法合成,该法环保性较差。电化学合成氨是一种绿色环保、低能耗的方法,其关键在于提高电催化剂的选择性和抑制析氢性能。本文基于沸石咪唑酯骨架材料(ZIFs),结合不同合成手段,开发了系列元素掺杂的限域碳基催化剂,并对催化剂的结构,形貌及其氮还原催化性能进行了研究,并对催化剂在碱性条件下的氮还原机理进行了探讨。具体内容如下:

       (1) 以ZIF-67为前驱体,采用高温热解法制备了钴-氮共掺杂的限域碳基催化剂。研究表明,ZIF-67拓扑结构在高温热解后得以保留,热解温度的改变可以调节催化剂中钴和氮的含量,进而调控催化剂活性。当热解温度为600℃时,催化剂中含有的氮还原催化活性位点最多,在0.10 M KOH碱性电解质中于-0.1 V 相对于可逆氢电极( vs. RHE)下,产氨速率为60.57 μg·h-1·mgcat.-1,法拉第效率为23.30%。15N2同位素标记实验表明得到产物氨的氮源来自于所提供的N2

      (2) 针对直接裂解ZIF-67获得的催化剂活性位点直接暴露,容易因腐蚀而影响催化剂的寿命问题,我们以ZIF-67和ZIF-8做复合前驱体,与三聚氰胺共裂解合成了氮掺杂碳纳米管包覆钴催化剂。研究表明,在0.10 M KOH碱性电解质中于-0.2 V ( vs. RHE)时产氨速率为59.11 µg·h-1·mgcat.-1,而-0.1 V ( vs. RHE)时的法拉第效率达78.15%;持续催化合成氨10 h,产氨速率和法拉第效率保持稳定。催化剂中存在的Co-N和C-N键是氮还原催化反应的主要活性位点,起到与反应物充分接触和降低N2还原活化能的作用;包覆结构有利于提高催化剂的稳定性。

      (3) 受天然固氮酶的启发,以ZIF-8为前驱体经高温碳化分别制备了硫-氮共掺杂和铁-氮共掺杂的碳基限域催化剂。1100℃制备的硫-氮共掺杂催化剂呈现高度无序的三维多孔结构,在0.10 M KOH电解质中于-0.4 V ( vs. RHE)时具有最佳的产氨速率和法拉第效率,分别为27.78 μg·h-1·mgcat.-1和22.74%。铁-氮共掺杂的碳基催化剂在电解电位为-0.6 V( vs. RHE)时,产氨速率最大为40.86 μg·h-1·mgcat.-1,电位移至-0.2 V ( vs. RHE)时,法拉第效率可达87.41%。催化剂表面积为696.54 m2·g-1,孔容为0.48 cm3·g-1,从而提升了电解质传质速率和气体扩散性能,Fe-N4与C-N键的存在则为催化剂提供了更多的活性位点,从而有利于电催化氮还原反应 ( NRR )。

       本文设计制备了系列ZIFs衍生元素掺杂的限域碳基催化剂,并在碱性条件下对催化剂的氮还原催化性能进行了研究。掺杂后的催化剂具有丰富的活性位点和结构缺陷,为提高催化剂的氮还原性能提供了可能,同时将为开发具有高稳定性和高催化活性的N2还原合成NH3催化剂提供新的研究思路。

论文外文摘要:

      Ammonia, as a carbon-free energy carrier, is traditionally synthesized by the Harbor-Bosch method, which is environmentally unfriendly. The electrochemical synthesis of ammonia is gaining attention because it offers the potential for a more sustainable and energy-efficient route to ammonia production. The key challenges in achieving efficient electrochemical ammonia synthesis are improving the selectivity of the electrocatalyst for the desired nitrogen reduction reaction (NRR), and inhibiting the hydrogen evolution which can reduce the overall efficiency of ammonia production. In this paper, a series of element-doped carbon-based confinement catalysts based on zeolitic imidazolate frameworks (ZIFs) were developed via various synthesis methods. The structure, morphology, and performance of the catalysts for the N2-to-NH3 conversion were investigated, as well as the mechanism of nitrogen reduction of the catalysts under alkaline conditions. The specific contents are as follows:

      (1) Cobalt-nitrogen codoped carbon-based catalysts were prepared by high temperature carbonization of ZIF-67. The results show that the catalysts preserve the topology of ZIF-67. The catalytic activity could be tuned by altering the carbonization temperature to adjust the cobalt and nitrogen contents in the catalyst. At a carbonization temperature of 600°C, the obtained catalysts contain the most catalytically active sites for nitrogen reduction, with an NH3 yield rate of about 60.57 μg·h-1·mgcat.-1 and a Faradaic efficiency of 23.30% at -0.1 V (vs. RHE) in 0.10 M KOH electrolyte. All ammonia production remain relatively stable, which suggests the excellent stability of the as-prepared catalysts. 15N2 isotope labeling experiments indicated that the nitrogen source for the produced ammonia is from the supplied N2 but not catalysts.

      (2) To address the problems that the active sites of the catalysts obtained by direct pyrolysis of ZIF-67 are exposed and the lifetime of the catalysts is easily affected due to corrosion, the catalysts with coating structure were prepared. The nitrogen doped carbon nanotube coated cobalt catalysts were synthesized by co-pyrolysis ZIF-67 and ZIF-8 complex precursors with melamine. Under the ambient condition, the catalysts can achieve an ammonia yield rate of about 59.11 μg·h-1·mgcat.-1 at -0.2 V ( vs. RHE) and a Faradaic efficiency of 78.15% at -0.1 V ( vs. RHE) in 0.10 M KOH electrolyte. These two parameters remain stable under the continuous use of catalytic nitrogen reduction for 10 h. The Co-N and C-N bonds present in the catalyst may be the main active sites in the nitrogen reduction reaction, which play the roles of fully contacting with the reactants and lowering the activation energy of N2 reduction. Also, the coating structure is beneficial for the improvement of the stability of the catalyst.

      (3) Inspired by natural nitrogen-fixing enzymes, carbon-based catalysts codoped with sulfur-nitrogen and iron-nitrogen were prepared by pyrolysis of ZIF-8. The sulfur-nitrogen codoped carbon-based catalysts were prepared at 1100°C, which exhibits a highly disordered three-dimensional porous structure and has the optimum ammonia yield rate of 27.78 μg·h-1·mgcat.-1 and Faradaic efficiency of 22.74% at -0.4 V ( vs. RHE) in 0.10 M KOH electrolyte, respectively. The iron-nitrogen codoped carbon-based catalysts prepared at 900°C exhibit the maximum ammonia production rate of 40.86 μg·h-1·mgcat.-1 at -0.6 V (vs. RHE) and the Faradaic efficiency of 87.41% at -0.2 V (vs. RHE). The surface area of 696.54 m2·g-1 and the pore volume of 0.48 cm3·g-1 provide great convenience for electrolyte mass transfer and gas diffusion, while the presence of Fe-N4 and C-N bonds provides more active sites for the catalyst, thus favoring the NRR reaction.

      In this work, a series of elements doped carbon-based catalysts derived from ZIFs were prepared and the catalytic performance of the catalysts for nitrogen reduction under alkaline conditions was investigated. The as-prepared catalysts have abundant active sites and structural defects, which offer the possibility of improving the performance of NRR. In addition, this will provide new research ideas for the development of catalysts for the synthesis of NH3 by N2 reduction with high stability and high catalytic activity.

参考文献:

[1] Suryanto B. H. R., Matuszek K., Choi J., et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle [J]. Science, 2021, 372(6547): 1187-1191.

[2] Guo C., Ran J., Vasileff A., et al. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3)under ambient conditions [J]. Energy Environmental Science, 2018, 11(1): 45-56.

[3] Chen J. G., Crooks R. M., Seefeldt L. C., et al. Beyond fossil fuel-driven nitrogen transformations [J]. Science, 2018, 360(6391): eaar6611.

[4] Wang L., Wu J., Wang S., et al. The reformation of catalyst: From a trial-and-error synthesis to rational design [J]. Nano Research, 2024, 17: 3261-3301.

[5] 顾宗勤, 苏建英. 氮肥, 甲醇行业应勇于扛起碳减排的重任 [J]. 化学工业, 2021, 4: 1-5.

[6] Gupta D., Kafle A., Kaur S., et al. Selective electrochemical conversion of N2 to NH3 in neutral media using B, N-containing carbon with a nanotubular morphology [J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4033-4043.

[7] Janssen R. A., Nelson J. Factors limiting device efficiency in organic photovoltaics [J]. Advanced Materials, 2013, 25(13): 1847-1858.

[8] Wang H., Li Y., Li C., et al. One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia [J]. Journal of Materials Chemistry A, 2019, 7(2): 801-805.

[9] Wang J., Yu L., Hu L., et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential [J]. Nature Communications, 2018, 9(1): 1795.

[10] Wu Z.-Y., Karamad M., Yong X., et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst [J]. Nature Communications, 2021, 12(1): 2870.

[11] Shilov A. E. Catalytic reduction of molecular nitrogen in solutions [J]. Russian Chemical Bulletin, 2003, 52: 2555-2562.

[12] Tong W., Huang B., Wang P., et al. Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires [J]. National Science Review, 2021, 8(1): nwaa088.

[13] Cai M., Xu L., Guo J., et al. Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2024, 12(2): 592-612.

[14] Yu Y., Li Y., Fang Y., et al. Recent advances of ammonia synthesis under ambient conditions over metal-organic framework based electrocatalysts [J]. Applied Catalysis B: Environmental, 2024, 340: 123161.

[15] Ma X.-L., Liu J.-C., Xiao H., et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion [J]. Journal of the American Chemical Society, 2018, 140(1): 46-49.

[16] Chen G.-F., Yuan Y., Jiang H., et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J]. Nature Energy, 2020, 5(8): 605-613.

[17] Dai J., Tong Y., Zhao L., et al. Spin polarized Fe1-Ti pairs for highly efficient electroreduction nitrate to ammonia [J]. Nature Communications, 2024, 15(1): 88.

[18] Zhao X., Hu G., Chen G. F., et al. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction [J]. Advanced Materials, 2021, 33(33): 2007650.

[19] Cui X., Tang C., Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions [J]. Advanced Energy Materials, 2018, 8(22): 1800369.

[20] Nazemi M., Panikkanvalappil S. R., El-Sayed M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages [J]. Nano Energy, 2018, 49: 316-323.

[21] Mukherjee S., Cullen D. A., Karakalos S., et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes [J]. Nano Energy, 2018, 48: 217-226.

[22] Niu L., An L., Wang X., et al. Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: challenges and opportunities for chemical fuels [J]. Journal of Energy Chemistry, 2021, 61: 304-318.

[23] Wang Z., Li Y., Yu H., et al. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower‐like gold microstructures [J]. ChemSusChem, 2018, 11(19): 3480-3485.

[24] Zhao X., Yao C., Chen H., et al. In situ nano Au triggered by a metal boron organic polymer: efficient electrochemical N2 fixation to NH3 under ambient conditions [J]. Journal of Materials Chemistry A, 2019, 7(36): 20945-20951.

[25] Zhang J., Ji Y., Wang P., et al. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation [J]. Advanced Functional Materials, 2020, 30(4): 1906579.

[26] He H., Zhu Q.-Q., Yan Y., et al. Metal-organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3 [J]. Applied Catalysis B: Environmental, 2022, 302: 120840.

[27] Cai W., Han Y., Pan Y., et al. The twinned Pd nanocatalyst exhibits sustainable NRR electrocatalytic performance by promoting the desorption of NH3 [J]. Journal of Materials Chemistry A, 2021, 9(23): 13483-13489.

[28] Gao W.-Y., Hao Y.-C., Su X., et al. Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates [J]. Chemical Communications, 2019, 55(72): 10705-10708.

[29] Li W., Li K., Ye Y., et al. Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots [J]. Communications Chemistry, 2021, 4(1): 10.

[30] Liu H.-M., Han S.-H., Zhao Y., et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction [J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217.

[31] Yao Y., Wang H., Yuan X.-Z., et al. Electrochemical nitrogen reduction reaction on ruthenium [J]. ACS Energy Letters, 2019, 4(6): 1336-1341.

[32] Kour G., Mao X., Du A. Computational screening of single-atom alloys TM@Ru(0001)for enhanced electrochemical nitrogen reduction reaction [J]. Journal of Materials Chemistry A, 2022, 10(11): 6204-6215.

[33] Lin Y.-X., Zhang S.-N., Xue Z.-H., et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles [J]. Nature Communications, 2019, 10(1): 4380.

[34] Lin S., Zhang X., Chen L., et al. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia [J]. Green Chemistry, 2022, 24(23): 9003-9026.

[35] Ahmed M. I., Hibbert D. B., Zhao C. Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions [J]. Green Energy & Environment, 2023, 8(6): 1567-1595.

[36] Tsuchida Y., Murakami N., Sakakura T., et al. Drastically increase in atomic nitrogen production depending on the dielectric constant of beads filled in the discharge space [J]. ACS omega, 2021, 6(44): 29759-29764.

[37] Yu L., Zeng K., Li C., et al. High‐entropy alloy catalysts: From bulk to nano toward highly efficient carbon and nitrogen catalysis [J]. Carbon Energy, 2022, 4(5): 731-761.

[38] Wang Z., Li C., Deng K., et al. Ambient nitrogen reduction to ammonia electrocatalyzed by bimetallic PdRu porous nanostructures [J]. ACS Sustainable Chemistry Engineering, 2019, 7(2): 2400-2405.

[39] Pang F., Wang F., Yang L., et al. Hierarchical nanoporous Pd1Ag1 alloy enables efficient electrocatalytic nitrogen reduction under ambient conditions [J]. Chemical Communications, 2019, 55(68): 10108-10111.

[40] Fu W., Cao Y., Feng Q., et al. Pd-Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N2 reduction and room-temperature Suzuki-Miyaura coupling reaction [J]. Nanoscale, 2019, 11(3): 1379-1385.

[41] Wang X., Luo M., Lan J., et al. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction [J]. Advanced Materials, 2021, 33(18): 2007733.

[42] Tong W., Huang B., Wang P., et al. Crystal‐phase‐engineered PdCu electrocatalyst for enhanced ammonia synthesis [J]. Angewandte Chemie International Edition, 2020, 59(7): 2649-2653.

[43] Wang Y., Chen A., Lai S., et al. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions [J]. Journal of Catalysis, 2020, 381: 78-83.

[44] Pang F., Wang Z., Zhang K., et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction [J]. Nano Energy, 2019, 58: 834-841.

[45] Shi J.-L., Xiang S.-Q., Su D.-J., et al. Theoretical Insights on Au‐based bimetallic alloy electrocatalysts for nitrogen reduction reaction with high selectivity and activity [J]. ChemSusChem, 2021, 14(20): 4525-4535.

[46] Liu Y., Huang L., Zhu X., et al. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction [J]. Nanoscale, 2020, 12(3): 1811-1816.

[47] Wang L., Liu H., Wang J., et al. Research progress and challenges of copper-based catalysts in electrochemical nitrogen/carbon fixation [J]. Scientia Sinica Chimica, 53(8): 1306-1324.

[48] Guo X., Li X., Li Y., et al. Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster [J]. Nano Energy, 2020, 78: 105211.

[49] Zhang D., Zhao H., Wu X., et al. Multi‐site electrocatalysts boost pH‐universal nitrogen reduction by high‐entropy alloys [J]. Advanced Functional Materials, 2021, 31(9): 2006939.

[50] Xie P., Yao Y., Huang Z., et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nature Communications, 2019, 10(1): 4011.

[51] Liu J., Kelley M. S., Wu W., et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia [J]. Proceedings of the National Academy of Sciences, 2016, 113(20): 5530-5535.

[52] Liu Y., Wang W., Zhang S., et al. MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3 [J]. ACS Sustainable Chemistry Engineering, 2020, 8(5): 2320-2326.

[53] Chen P., Zhang N., Wang S., et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis [J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6635-6640.

[54] Chu K., Wang J., Liu Y.-P., et al. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: the critical role of the Mo-Sn-Sn trimer [J]. Journal of Materials Chemistry A, 2020, 8(15): 7117-7124.

[55] Ahmed M. I., Arachchige L. J., Su Z., et al. Nitrogenase-inspired atomically dispersed Fe-S-C linkages for improved electrochemical reduction of dinitrogen to ammonia [J]. ACS Catalysis, 2022, 12(2): 1443-1451.

[56] Wang H.-B., Wang J.-Q., Zhang R., et al. Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia [J]. ACS Catalysis, 2020, 10(9): 4914-4921.

[57] Jia K., Wang Y., Pan Q., et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions [J]. Nanoscale Advances, 2019, 1(3): 961-964.

[58] Sebastian M., Das S., Gopalan N. K. Nitrogen reduction reaction under ambient conditions by K3Ti8O17 nanorod electrocatalyst [J]. Sustainable Energy Fuels, 2022, 6(6): 1519-1528.

[59] Shi M.-M., Bao D., Wulan B.-R., et al. Au sub‐nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions [J]. Advanced Materials, 2017, 29(17): 1606550.

[60] Younis M. A., Manzoor S., Ali A., et al. Nanosheet arrays of iron oxide for enhanced ammonia synthesis via electrochemical nitrogen reduction for prospective algal membrane bioreactors [J]. Chemosphere, 2023, 338: 139621.

[61] Liu Q., Zhang X., Zhang B., et al. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod [J]. Nanoscale, 2018, 10(30): 14386-14389.

[62] Hu L., Khaniya A., Wang J., et al. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst [J]. ACS Catalysis, 2018, 8(10): 9312-9319.

[63] Takashima T., Mochida T., Irie H. Electrochemical nitrogen reduction to ammonia using mesoporous iron oxide with abundant oxygen vacancies [J]. Sustainable Energy Fuels, 2023, 7(11): 2740-2748.

[64] Ying H., Bi J., Xu H., et al. Mn-doped Bi2O3 nanosheets from a deep eutectic solvent toward enhanced electrocatalytic N2 reduction [J]. ACS Sustainable Chemistry Engineering, 2022, 10(20): 6766-6774.

[65] Lv C., Yan C., Chen G., et al. An amorphous noble‐metal‐free electrocatalyst that enables nitrogen fixation under ambient conditions [J]. Angewandte Chemie International Edition, 2018, 57(21): 6073-6076.

[66] Xiao L., Zhu S., Liang Y., et al. Nanoporous nickel-molybdenum oxide with an oxygen vacancy for electrocatalytic nitrogen fixation under ambient conditions [J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30722-30730.

[67] Abghoui Y., Egill S. Electrochemical synthesis of ammonia via mars-van krevelen mechanism on the (111) facets of group Ⅲ-Ⅶ transition metal mononitrides [J]. Catalysis Today, 2017, 286: 78-84.

[68] Younis M. A., Manzoor S., Ali A., et al. Nitrogen-vacancy-rich molybdenum nitride nanosheets as highly efficient electrocatalysts for nitrogen reduction reaction [J]. Dalton Transactions, 2024, 53(4): 1809-1816.

[69] Ren X., Cui G., Chen L., et al. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst [J]. Chemical Communications, 2018, 54(61): 8474-8477.

[70] Yang X., Nash J., Anibal J., et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles [J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391.

[71] Wang P., Zhao S., Xing Y., et al. N, P Co-doped porous carbon electrocatalyst fabricated through relieving the competition effect between N source and P source with enhanced nitrogen reduction reaction [J]. Microporous and Mesoporous Materials, 2024, 368: 113031.

[72] Jin H., Li L., Liu X., et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction [J]. Advanced Materials, 2019, 31(32): 1902709.

[73] Chu K., Liu Y.-P., Wang J., et al. NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3 [J]. ACS Applied Energy Materials, 2019, 2(3): 2288-2295.

[74] Zhang X., Liu Q., Shi X., et al. TiO2 nanoparticles-reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions [J]. Journal of Materials Chemistry A, 2018, 6(36): 17303-17306.

[75] Huang H., Gong F., Wang Y., et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions [J]. Nano Research, 2019, 12: 1093-1098.

[76] Wang F., Liu Y.-P., Zhang H., et al. CuO/graphene nanocomposite for nitrogen reduction reaction [J]. ChemCatChem, 2019, 11(5): 1441-1447.

[77] Li X., Ren X., Liu X., et al. A MoS2 nanosheet-reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions [J]. Journal of Materials Chemistry A, 2019, 7(6): 2524-2528.

[78] Xie H., Geng Q., Li X., et al. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N2 conversion to NH3 under ambient conditions [J]. Chemical Communications, 2019, 55(72): 10717-10720.

[79] Li J., Zhu X., Wang T., et al. An Fe2O3 nanoparticle-reduced graphene oxide composite for ambient electrocatalytic N2 reduction to NH3 [J]. Inorganic Chemistry Frontiers, 2019, 6(10): 2682-2685.

[80] Chu K., Liu Y.-P., Li Y.-B., et al. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction [J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31806-31815.

[81] Zhang N., Gao Y., Ma L., et al. Single transition metal atom anchored on g-C3N4 as an electrocatalyst for nitrogen fixation: A computational study [J]. International Journal of Hydrogen Energy, 2023, 48(21): 7621-7631.

[82] Shen K., Chen X., Chen J., et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis [J]. ACS Catalysis, 2016, 6(9): 5887-5903.

[83] Shan Z., Sun Y., Wu M., et al. Metal-porphyrin-based three-dimensional covalent organic frameworks for electrocatalytic nitrogen reduction [J]. Applied Catalysis B: Environmental, 2024, 342: 123418.

[84] Lv C., Qian Y., Yan C., et al. Defect engineering metal‐free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions [J]. Angewandte Chemie International Edition, 2018, 57(32): 10246-10250.

[85] Yu X., Han P., Wei Z., et al. Boron-doped graphene for electrocatalytic N2 reduction [J]. Joule, 2018, 2(8): 1610-1622.

[86] Chen H., Zhu X., Huang H., et al. Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions [J]. Chemical Communications, 2019, 55(21): 3152-3155.

[87] Zhao J., Yang J., Ji L., et al. Defect-rich fluorographene nanosheets for artificial N2 fixation under ambient conditions [J]. Chemical Communications, 2019, 55(29): 4266-4269.

[88] Chen J., Huang H., Xia L., et al. Oxygen‐doped porous carbon nanosheet for efficient N2 fixation to NH3 at ambient conditions [J]. ChemistrySelect, 2019, 4(12): 3547-3550.

[89] Li L., Tang C., Xia B., et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction [J]. ACS Catalysis, 2019, 9(4): 2902-2908.

[90] Luo Y., Chen G.-F., Ding L., et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions [J]. Joule, 2019, 3(1): 279-289.

[91] Zhang L.-H., Yu F., Shiju N. R. Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion [J]. ACS Sustainable Chemistry Engineering, 2021, 9(23): 7687-7703.

[92] Pan Y., Wang M., Feng C. A doping-adsorption-pyrolysis strategy for constructing atomically dispersed cobalt sites anchored on a N-doped carbon framework as an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen reduction [J]. RSC Advances, 2022, 12(32): 20578-20582.

[93] Hursán D., Ábel M., Baán K., et al. CO2 conversion on N-doped carbon catalysts via thermo-and electrocatalysis: role of C-NOx moieties [J]. ACS Catalysis, 2022, 12(16): 10127-10140.

[94] Zhao Y., Hu C., Hu Y., et al. A versatile, ultralight, nitrogen‐doped graphene framework [J]. Angewandte Chemie International Edition, 2012, 51(45): 11371-11375.

[95] Zhao C., Zhang S., Han M., et al. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen [J]. ACS Energy Letters, 2019, 4(2): 377-383.

[96] Liu Y., Su Y., Quan X., et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon [J]. ACS Catalysis, 2018, 8(2): 1186-1191.

[97] Zhang M., Shen L., Yu C., et al. Boosting the faraday efficiency of electrochemical ammonia synthesis via the strain effect induced by interfacial hybrid formation between BN and carbon nanotubes [J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8832-8841.

[98] Qin M., Li X., Gan G., et al. Boosting electrocatalytic nitrogen fixation with Co-N3 site-decorated porous carbon [J]. ACS Sustainable Chemistry Engineering, 2020, 8(35): 13430-13439.

[99] Gao Y., Han Z., Hong S., et al. ZIF-67-derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction [J]. ACS Applied Energy Materials, 2019, 2(8): 6071-6077.

[100] Wen L., Li X., Zhang R., et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation [J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14181-14188.

[101] Luo S., Li X., Zhang B., et al. MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions [J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26891-26897.

[102] Xia L., Wu X., Wang Y., et al. S‐doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3 [J]. Small Methods, 2019, 3(6): 1800251.

[103] Liang X., Ren X., Yang Q., et al. A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction [J]. Nanoscale, 2021, 13(5): 2843-2848.

[104] Hada K., Nagai M., Omi S. Characterization and HDS activity of cobalt molybdenum nitrides [J]. The Journal of Physical Chemistry B, 2001, 105(19): 4084-4093.

[105] Ma X.-X., He X.-Q., Asefa T. Hierarchically porous Co3C/Co-NC/G modified graphitic carbon: a trifunctional corrosion-resistant electrode for oxygen reduction, hydrogen evolution and oxygen evolution reactions [J]. Electrochimica Acta, 2017, 257: 40-48.

[106] Zhang H., Ma Z., Duan J., et al. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction [J]. ACS Nano, 2016, 10(1): 684-694.

[107] He T., Chen Y., Liu Q., et al. Theory‐guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries [J]. Angewandte Chemie International Edition, 2022, 61(27): e202201007.

[108] 蒲晨, 邓代洁, 李赫楠, 等. 氮掺杂碳纳米管包覆 Fe0.64Ni0.36@Fe3NiN 核壳结构用于高稳定锌-空气电池 [J]. 物理化学学报, 2024, 40: 2304021.

[109] Kong Y., Jiang X., Li X., et al. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity [J]. Chinese Journal of Catalysis, 2023, 45: 95-106.

[110] Wang S., Qin J., Meng T., et al. Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries [J]. Nano Energy, 2017, 39: 626-638.

[111] Xie H.-Q., Zheng X., Feng Q.-Y., et al. Single‐step synthesis of Fe-Fe3O4 catalyst for highly efficient and selective electrochemical nitrogen reduction [J]. ChemSusChem, 2022, 15(21): e202200919.

[112] Wang Y., Cui X., Zhao J., et al. Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution [J]. ACS Catalysis, 2018, 9(1): 336-344.

[113] Yi X., He X., Yin F., et al. NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high faradaic efficiency under ambient conditions in neutral electrolyte [J]. Journal of Materials Science, 2020, 55: 12041-12052.

[114] Zhang R., Jiao L., Yang W., et al. Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction [J]. Journal of Materials Chemistry A, 2019, 7(46): 26371-26377.

[115] Chu K., Li Q.-Q., Liu Y.-P., et al. Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction [J]. Applied Catalysis B: Environmental, 2020, 267: 118693.

[116] 李琳. 元素掺杂碳基介孔材料的制备及其氮还原电催化性能研究 [D]; 山西师范大学, 2020.

[117] Wei B., Liang Y., Li L., et al. Preparation of sulfur and nitrogen co-doped carbon-based porous nanomaterials for efficient electrocatalytic N2 reduction [J]. Journal of Electronic Materials, 2023, 52(3): 2227-2235.

[118] Wang Q., Ina T., Chen W.-T., et al. Evolution of Zn (II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons [J]. Science Bulletin, 2020, 65(20): 1743-1751.

[119] Wang X., Zhao Y., Wang L., et al. Regulating the electronic configuration of supported iron nanoparticles for electrochemical catalytic nitrogen fixation [J]. Advanced Functional Materials, 2022, 32(21): 2111733.

[120] Yang H., Liu Y., Luo Y., et al. Achieving high activity and selectivity of nitrogen reduction via Fe-N3 coordination on iron single-atom electrocatalysts at ambient conditions [J]. ACS Sustainable Chemistry Engineering, 2020, 8(34): 12809-12816.

[121] Wang M., Liu S., Qian T., et al. Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential [J]. Nature Communications, 2019, 10(1): 341.

[122] Song Z., Liu Y., Zhao J., et al. Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups [J]. Chemical Engineering Journal, 2022, 434: 134636.

[123] Chen C., Yan D., Wang Y., et al. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency [J]. Small, 2019, 15(7): 1805029.

[124] Liu H., Cao X., Ding L.-X., et al. Sn‐doped black phosphorene for enhancing the selectivity of nitrogen electroreduction to ammonia [J]. Advanced Functional Materials, 2022, 32(19): 2111161.

[125] Qiu W.-B., Luo Y.-X., Liang R.-P., et al. B4C nanosheets decorated with in situ-derived boron-doped graphene quantum dots for high-efficiency ambient N2 fixation [J]. Chemical Communications, 2019, 55(51): 7406-7409.

[126] Fei H., Guo T., Xin Y., et al. Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3 [J]. Applied Catalysis B: Environmental, 2022, 300: 120733.

[127] Liu Y., Li Q., Guo X., et al. A highly efficient metal‐free electrocatalyst of F-doped porous carbon toward N2 electroreduction [J]. Advanced Materials, 2020, 32(24): 1907690.

[128] Yang Y., Wang S.-Q., Wen H., et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation [J]. Angewandte Chemie International Edition, 2019, 58(43): 15362-15366.

[129] Qin L., Zhao Y.-X., Liu Q., et al. Directional design of the pyridine ligand functional block fine-tuned hydrophobicity to improve the electrocatalytic nitrogen fixation performance of the Co/Ni based MOFs-derived materials [J]. International Journal of Hydrogen Energy, 2024, 65: 648-658.

[130] Liu Y., Xu Q., Fan X., et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions [J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363.

中图分类号:

 O643.3    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式