- 无标题文档
查看论文信息

论文中文题名:

 面齿轮传动齿形曲面的设计与承载特性分析    

姓名:

 houyanyan侯艳艳    

学号:

 19205201088    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 齿轮传动    

第一导师姓名:

 彭先龙    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-25    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Design of Tooth Shape Surface and Analysis of Bearing Characteristics of Face Gear Transmission    

论文中文关键词:

 面齿轮传动 ; 主动修形 ; 承载接触特性 ; 可展直纹面 ; 有限元仿真    

论文外文关键词:

 face gear drive ; active modification ; load-bearing contact characteristic ; developable ruled surface ; Finite element simulation    

论文中文摘要:

面齿轮传动是一种新型齿轮传动方式,当锥齿轮与圆柱齿轮啮合,两轮轴线垂直时称为面齿轮传动,即面齿轮传动是一种特殊的锥齿轮传动。与锥齿轮相比,面齿轮传动因重合度大、结构紧凑、运动噪声小、传动比大等优点,在航空工业中越来越受重视。因其具有良好的“分扭—汇扭”作用,在直升机动力传动系统中也展现出广阔的应用前景。本文的主要研究内容及成果如下:

(1) 为了改善面齿轮副的啮合特性与承载接触特性,对面齿轮副的齿面进行了主动修形。齿轮主动修形是一种可以直接预控齿轮啮合性能的方法。对面齿轮副可采用主动修形的方法来预控其几何性能,从而对其承载接触特性进行预控。这说明主动修形微观修形参数与面齿轮副的承载接触特性之间存在着必然的联系。为了进一步研究微观修形参数对面齿轮承载接触特性的影响,首先,建立了面齿轮副主动修形的有限元装配模型;其次,通过有限元仿真获得修形参数不同时面齿轮副的承载接触特性;最后,通过不同修形参数对面齿轮副承载特性的影响,判断出各主动修形微观参数的最佳取值范围。从而为面齿轮的加工、应用提供设计依据。

(2) 面齿轮齿面为复杂的空间异形曲面,使其加工制造较为困难、加工成本较高。为了简单、高效的加工面齿轮,根据传统面齿轮的齿形特征,提出了面齿轮齿面可由一系列直线族构成的假设,通过在其齿面上建立空间直线方程验证了齿面直线族的存在;基于渐开线建立了可展直纹面面齿轮数学模型,并对其进行了齿面修形;分析了面齿轮直线齿廓与传统齿廓的偏差,并讨论了传动比对偏差的影响,结果表明传动比较大时两者偏差较小,可使用直线齿廓代替传统齿廓。

(3) 通过齿面接触分析,对可展直纹面面齿轮的啮合特性进行评价;为说明可展直纹面代替传统齿面的可行性,对其进行承载接触分析,并与传统面齿轮副及主动修形面齿轮副的承载特性进行比较,结果显示:可展直纹面与传统齿面承载能力相当。

论文外文摘要:

Face gear drive is a new type of gear drive mode. When bevel gear and cylindrical gear mesh and the axes of the two wheel are vertical, it is called face gear drive. Namely face gear drive is a special bevel gear transmission. Compared with bevel gear, face gear transmission has attracted more and more attention in the aviation industry because of its advantages, such as large coincidence degree, compact structure, low motion noise and large transmission ratio. Because of its good function of ‘split of torque-sink of torque’, it also shows a broad application prospect in helicopter power transmission system. The main research contents and achievements of this paper are as follows:

(1) In order to improve the meshing and load-bearing contact characteristics of face gear pair, the tooth surface of face gear pair is actively modified. Active modification of gear is a method that can directly pre control the meshing performance of gear. The geometric performance of opposite gear pair can be pre controlled by active modification, so as to pre control the load-bearing contact characteristics of gear surface. It shows that there is an inevitable relationship between the micro modification parameters of active modification and the load-bearing contact characteristics of face gear pair. In order to further research the influence of micro modification parameters on the bearing contact characteristics of face gear, Firstly, the finite element assembly model of active modification of face gear pair is established ; Secondly, the load-bearing contact characteristics of face gear pairs with different modification parameters are obtained by finite element simulation ;Finally, through the influence of different modification parameters on the bearing characteristics of face gear pair, the optimal value range of micro parameters of active modification is determined . So as to provide design basis for the processing and application of face gear.

(2) The tooth surface of face gear is a complex spatial special-shaped curved surface, which makes it difficult to manufacture and high processing cost. In order to process face gear simply and efficiently, according to the tooth profile characteristics of traditional face gear, the hypothesis that the tooth surface of face gear can be composed of a series of straight line families is put forward. The existence of tooth surface straight line families is verified by establishing spatial straight line equations on its tooth surface; The mathematical model of developable ruled surface gear is established based on involute, and its tooth surface is modified; The deviation between the linear tooth profile and the theoretical tooth profile of face gear is analyzed, and the influence of transmission ratio on it is discussed. The results show that the deviation between the two is small when the transmission ratio is large, and the straight tooth profile can be used instead of theoretical tooth profile. 

(3) The meshing characteristics of developable ruled surface gear are evaluated by tooth surface contact analysis; In order to illustrate the feasibility of the developable ruled surface replacing the theoretical tooth surface, the load-bearing contact analysis is carried out, and the load-bearing characteristics are compared with the theoretical surface gear pair and the active modified surface gear pair. The results show that the load-bearing capacity of the developable ruled surface is equivalent to that of the theoretical tooth surface.

参考文献:

[1]莫帅, 岳宗享, 冯志友, 等. 面齿轮分汇流系统动力学均载特性研究[J]. 华中科技大学学报(自然科学版), 2020, 48(2): 23-28.

[2]张广, 张丰收, 靳园园, 等. 面齿轮加工进展综述[J]. 机械传动, 2021, 45(11): 1-10.

[3]孙士帅, 面齿轮—面齿轮传动原理研究[D]. 哈尔滨工业大学, 2019, 1-8.

[4]刘艳平. 直齿—面齿轮加载接触分析及弯曲应力和接触应力计算方法研究[D]. 中南大学, 2012, 8-18.

[5]李晓贞, 盛冬平, 张栋林. 加工误差对面齿轮接触特性影响分析 [J]. 制造业自动化, 2018, 40(10): 10-13.

[6]唐进元, 刘艳平. 直齿面齿轮加载啮合有限元仿真分析[J]. 机械工程学报, 2012, 48(5): 124-131.

[7]盛伟, 冯占荣, 王利霞, 等. 面齿轮传动研究进展[J]. 工具技术, 2018, 52(7): 3-9.

[8]彭先龙, 徐琪超, 侯祥颖, 等. 安装误差对面齿轮承载传动性能的影响[J]. 哈尔滨工程大学学报, 2020, 41(12): 1861-1867.

[9]Chu X, Wang Y, Du S, et al. An efficient generation grinding method for spur face gear along contact trace using disk CBN wheel[J]. International Journal of Advanced Manufacturing Technology, 2020, 110(5-6): 1179-1187.

[10]Bossler JR R, Heath G. Advanced rotorcraft transmission program summary[R]. 28th Joint Propulsion Conference and Exhibit, 1992, 3363.

[11]Robert R. Filler, Gregory F. Heath, Stephen C. Slaughter, et al. “Torque Splitting by a Concentric Face Gear Transmission” , the American Helicopter Society 58th Annual Forum, Montreal, Canada, June 11-22, 2002.

[12]Litvin F L, Fuentes A. Gear geometry and applied theory[M]. Cambridge University Press, 2004, 83-516.

[13]Litvin F L, Wang J C, Bossler R B, et al. Application of face-gear drives in helicopter transmissions[J]. Journal of Mechanical Design, 1994, 116(3): 674-676.

[14]Handschuh R F, Lewicki D G, Bossler R B. Experimental testing of prototype face gears for helicopter transmissions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1994, 208(2): 129-136.

[15]彭先龙, 候艳艳, 张乐, 等. 可展直纹面面齿轮的加工原理与方法[J]. 西北工业大学学报, 2020, 38(6): 1299-1307.

[16]Zschippang H A, Weikert S, Küçük K A, et al. Face-gear drive: Geometry generation and tooth contact analysis[J]. Mechanism and Machine Theory, 2019, 142: 103576.

[17]唐进元, 杨晓宇. 面齿轮数控插铣加工方法研究[J]. 机械传动, 2015, 39(6): 5-8.

[18]唐进元, 周恒. 蜗杆砂轮曲面与面齿轮齿面的对应关系[J]. 中南大学学报(自然科学版), 2017, 48(1): 99-105.

[19]彭先龙, 方宗德, 苏进展, 等. 采用碟形砂轮的面齿轮磨齿方法理论分析[J]. 航空动力学报, 2012, 27(5): 1159-1165.

[20]Peng Xianlong, Niu Qinyu, Guo Wei, et al. A New Method of Motion Rule Synthesis for Face Gear Manufacturing by Plane- Cutter[J]. Journal of Mechanical Design, 2018, 140(4): 023302.

[21] Buckingham E. Analytical mechanics of gears[M]. Courier Corporation, 1988.

[22]马天祺. 面齿轮—面齿轮少齿差传动条件的研究[D]. 哈尔滨工业大学, 2021: 8-10.

[23]Litvin F L, Lu J, Townsend, D P, et al. Computerized simulation of meshing of conventional helical involute gears and modification of geometry [J]. Mechanism and Machine Theory, 1999, 34(1): 123-147.

[24]Inoue T, Kurokawa S. Derivation of path of contact and tooth flank modification by minimizing transmission error on face gear[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2012, 6(1): 15-22.

[25]Tsay M F, Fong Z H. Novel profile modification methodology for moulded face-gear drives[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221(6): 715-725.

[26]Wang C, Fang Z, Jia H. Investigation of a design modification for double helical gears reducing vibration and noise[J]. Journal of Marine Science and Application, 2010, 9: 81-86.

[27]Guo H, Zhao N, Gao H. Tooth contact analysis of face gear drive modified by a grinding worm[J]. Advanced Materials Research, 2010, 139-141: 1154–1157.

[28]吴训成, 毛世民, 吴序堂. 点啮合齿面主动设计理论和方法[J]. 机械科学与技术, 2000, 19(3): 347-349.

[29]彭先龙, 韩飞燕, 乔心州, 等. 斜齿面齿轮传动齿面主动修形与边缘接触分析[J]. 计算机集成制造系统, 2020, 26(11): 3040-3048.

[30]Peng X L, Zhang L, Fang Z. Manufacturing process for a face gear drive with local bearing contact and controllable unloaded meshing performance based on ease-off surface modification[J]. Journal of Mechanical Design, 2016, 138(4): 043302.

[31]曹雪梅, 方宗德, 张金良, 等. 弧齿锥齿轮的齿面主动设计[J]. 机械工程学报, 2007, 43(8): 155-158.

[32]杨博会, 曹雪梅, 佘定君, 等. 几何传动误差对弧齿锥齿轮承载及振动特性的影响[J]. 机械传动, 2020, 44(11): 1-6.

[33]吴聪, 李大庆, 魏冰阳. 小轮双向修形参数对面齿轮副啮合性能的影响[J]. 航空动力学报, 2012, 27(11): 2629-2634.

[34]李永华, 魏武松, 张旭. 基于多项式响应面代理模型的齿轮修形量优化[J]. 机械传动, 2020, 44(11): 27-33.

[35]牟彦铭, 方宗德, 张西金. 基于刀具齿廓修形的弧齿锥齿轮齿面设计[J]. 华中科技大学学报(自然科学版), 2019, 47(7): 97-101.

[36]纪颖. 弧齿锥齿轮动力学仿真分析及二次开发[D]. 哈尔滨工业大学, 2019: 1-10.

[37]Litvin F L, Zhang Y, Wang J C, et al. Design and geometry of face-gear drives[J]. Journal of Mechanical Design, 1992, 114(4): 642-647.

[38]Litvin F L, Fuentes A, Howkins M. Design, generation and TCA of new type of asymmetric face-gear drive with modified geometry[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(43-44): 5837-5865.

[39]Vivet M, Mundo D, Tamarozzi T, et al. An analytical model for accurate and numerically efficient tooth contact analysis under load, applied to face-milled spiral bevel gears[J]. Mechanism and Machine Theory, 2018, 130: 137-156.

[40]曹雪梅, 杨博会, 邓效忠. 轮齿接触分析的分解算法与试验验证[J]. 机械工程学报, 2018, 54(5): 47-52.

[41]Cao X, Deng X, Wei B. A novel method for gear tooth contact analysis and experimental validation[J]. Mechanism and Machine Theory, 2018, 126: 1-13.

[42]Guo H, Zhao N, Gao H. Tooth contact analysis of face gear drive modified by a grinding worm[J]. Advanced Materials Research, 2010, 139-141: 1154–1157.

[43]Fan Q, Wilcox L. New developments in tooth contact analysis (TCA) and loaded TCA for spiral bevel and hypoid gear drives[M]. AGMA, 2005.

[44]Zheng F, Zhang M, Zhang W, et al. On the deformed tooth contact analysis for forged bevel gear modification[J]. Mechanism and Machine Theory, 2019, 135: 192-207.

[45]Feng G, Xie Z, Zhou M. Geometric design and analysis of face-gear drive with involute helical pinion[J]. Mechanism and Machine Theory, 2019, 134: 169-196.

[46]彭先龙, 李爱民, 郭卫. 人字齿面齿轮传动及其几何啮合特性[J]. 机械科学与技术, 2017, 36(7): 1131-1135.

[47]Guingand M, De Vaujany J P, Jacquin C Y. Quasi-static analysis of a face gear under torque[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4301-4318.

[48]Litvin F L, Fuentes A, Zanzi C, et al. Design, generation, and stress analysis of two versions of geometry of face-gear drives[J]. Mechanism and Machine theory, 2002, 37(10): 1179-1211.

[49]Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Design, generation and stress analysis of face-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36-38): 3870-3901.

[50]Mehta G, Somani M, Babu T N, et al. Contact stress analysis on composite spur gear using finite element method[J]. Materials Today: Proceedings, 2018, 5(5): 13585-13592.

[51]Rao C R M, Muthuveerappan G. Finite element modelling and stress analysis of helical gear teeth[J]. Computers and Structures, 1993, 49(6): 1095-1106.

[52]侯祥颖, 方宗德. 弧齿锥齿轮的向量式有限元静态啮合分析[J]. 西安交通大学学报, 2017, 51(9): 85-91.

[53]侯祥颖, 方宗德. 考虑边缘接触的弧齿锥齿轮有限元接触分析[J]. 西安交通大学学报, 2016, 50(11): 69-74.

[54]侯祥颖, 方宗德, 蔡香伟, 等. 基于ABAQUS齿轮接触分析的前后处理[J]. 机械科学与技术, 2015, 34(7): 993-996.

[55]Xie K, Yang L, Wang Z, et al. Effects of torque and friction coefficients on the fretting characteristics of annular face gear contact interface[R]. 2018 3th International Conference on New Energy and Renewable Resources, 2018, 331.

[56]Zhang X, Liang Z. Mathematical model and contact characteristics of curvilinear cylindrical gears with line contact[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(4): 183.

[57]牟彦铭, 方宗德, 张西金. 高重合度弧齿锥齿轮高阶传动误差设计与分析[J]. 华中科技大学学报(自然科学版), 2018, 46(7): 67-72.

[58]付学中, 方宗德, 贾超, 等. 面齿轮传动啮合刚度分析与修形减振优化[J]. 振动与冲击, 2019, 38(5): 265-272.

[59]贾超, 方宗德, 张西金, 等. 斜齿轮齿面的修形优化设计及分析[J]. 华中科技大学学报(自然科学版), 2018, 46(5): 66-71.

[60]李政民卿, 朱如鹏. 面齿轮传动的承载接触分析[J]. 南京航空航天大学学报, 2010, 42(02): 219-223.

[61]刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析 [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.

[62]冯光烁, 顾永鹏, 兰旭东, 等. 人字形面齿轮几何设计与基本特征分析 [J]. 清华大学学报(自然科学版), 2019, 59(8): 670-682.

[63]Peng X L. A new geometry definition and generation method for a face gear meshed with a spur pinion[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 236(8): 1037-1051.

[64]徐秉业. 弹性力学及其应用[M]. 北京: 机械工业出版社, 1984: 73-256.

[65]徐琪超. 基于解析建模的面齿轮承载接触仿真分析[D]. 西安科技大学, 2020: 15-39.

[66]侯祥颖. 改进向量式有限元法及其在航空弧齿锥齿轮力学分析中的应用研究[D]. 西北工业大学, 2018: 35-69.

[67]Peng Xian long, Zhang Le, Fang Zongde. Manufacturing process for a face gear drive with local bearing contact and controllable unloaded meshing performance based on ease-off surface modification [J]. Journal of Mechanical Design, 2016, 138(4): 043302.

[68]Michele Guingand, Jean-Pierre de Vaujany, Colin-Yann Jacquin, “Quasi-static analysis of a face gear under torque” [J], Comput. Methods Appl. Mech. Engrg. 2005, 194:4301–4318.

中图分类号:

 TH132.41    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式