论文中文题名: |
MXene/纤维素多孔电磁屏蔽复合材料的制备与性能研究
|
姓名: |
石钦
|
学号: |
20211225037
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料与化工
|
研究方向: |
电磁屏蔽材料
|
第一导师姓名: |
李颖
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-18
|
论文答辩日期: |
2023-06-06
|
论文外文题名: |
Preparation and investigation on the electromagnetic interference shielding performance of MXene/cellulose porous composites
|
论文中文关键词: |
纤维素基多孔材料 ; MXene ; 电磁屏蔽 ; 微观结构调控 ; 高温碳化
|
论文外文关键词: |
Cellulose-based porous materials ; MXene ; electromagnetic interference shielding ; controlled microstructure ; high temperature carbonization
|
论文中文摘要: |
︿
随着我国科学技术的高速进步,电子产品的应用越来越广泛,但这些设备会不可避免地释放出电磁波,引起电子器件之间的电磁干扰,危害人体健康。高分子基电磁屏蔽材料因具有轻质,制备简单,成本低昂,耐腐蚀等优点而逐渐取代了传统的金属系电磁屏蔽材料,成为解决电磁干扰问题的关键材料。然而,目前所使用的大多数高分子材料基于石油开发而来,而石油的大量使用会造成严重的环境污染和不可再生资源消耗问题。作为一种天然高分子材料,纤维素具有来源丰富、储量巨大、可再生、可生物降解等特点,可被加工成纤维膜、水凝胶、气凝胶等多种材料。其中,纤维素多孔复合材料在电磁屏蔽领域表现出优异的综合性能。纤维素多孔材料的三维网络结构不仅有利于导电通路的构建,还有利于提高空气与材料的阻抗匹配,从而提高电磁波的吸收效率,对构建以吸收为主导的电磁屏蔽材料具有重要意义。另一方面,二维过渡金属碳化物/氮化物 (MXene) 因其优异的电导率、比表面积和特殊的片层结构,成为电磁屏蔽性能表现最佳的材料。因此,本文以Ti3C2TX 类型的MXene为填料,以纤维素多孔材料为基体,制备出兼具高吸收系数和高屏蔽性能的纤维素基电磁屏蔽多孔复合材料,并对其密度、红外光谱、拉曼光谱、微观结构、电导率、电磁屏蔽、电加热性能等进行了表征测试,研究了纤维素多孔材料的微观结构、MXene含量、分布方式以及纤维素基体的碳化对电磁屏蔽性能的影响。主要研究内容如下:
(1) 通过“溶解-凝胶-溶剂交换-冷冻干燥”工艺制备了纤维素多孔材料,进一步采用真空辅助浸渍法制备了MXene/纤维素多孔复合材料。通过简单调控冷冻介质中叔丁醇含量,实现了纤维素多孔材料微观结构从三维片层到三维纤维网络结构的调控。研究结果表明,当冷冻剂中叔丁醇含量为10%时,MXene/纤维素多孔复合材料表现出最优异的电磁屏蔽性能,这主要得力于其适宜的孔径大小及比表面积。另外,随着MXene浸渍次数的增加,MXene/纤维素多孔材料的电磁屏蔽效率 (EMI SE) 也随之增强,最高达到了46.8 dB ,同时吸收系数达到了0.79。最后,所制备的MXene/纤维素多孔复合材料还具有优异的电加热性能和热机械性能,大大扩宽了纤维素基电磁屏蔽多孔材料的适用范围。
(2) 使用MXene为导电填料,以纤维素多孔材料为基体,采用“自下而上-梯度浸渍-逐级调控”的方法,制备了MXene浓度梯度分布的MXene/纤维素多孔复合材料。结果表明,沿着浸渍方向,MXene在纤维素孔壁中呈现自高向低的浓度梯度分布。当电磁波从MXene浓度低至高方向入射时,其总EMI SE与电磁波从浓度高至低方向入射时相近,然而浓度低至高方向的吸收系数 (0.84) 远高于浓度高至低方向 (0.54),也高于MXene均匀分布的纤维素多孔复合材料 (0.76) 和纯MXene膜 (0.26) 的吸收系数。因此,通过调控MXene在纤维素多孔材料中的浓度梯度分布,可进一步优化复合材料的吸收系数。
(3) 使用MXene为导电填料,以碳化纤维素多孔材料为基体,通过“真空辅助浸渍-常温抽滤”的方法制备了MXene/碳化纤维素多孔复合材料。结果表明,碳化过程提高了纤维素多孔材料的EMI SE,在800 ℃时达到了30 dB。而MXene的加入将碳化纤维素多孔材料的EMI SE提高到了65 dB,是未加MXene的2.16倍,并且吸收系数也达到了0.81,有效地解决了以往报道中存在的高EMI SE和高吸收系数不可兼得的矛盾。
﹀
|
论文外文摘要: |
︿
With the rapid progress of science and technology in China, the application of electronic products is more and more extensive, but these devices will inevitably release electromagnetic waves, causing electromagnetic interference between electronic devices and endangering human health. Polymer-based electromagnetic shielding materials have gradually replaced the traditional metal-based ones due to their advantages such as lightweight, simple preparation, low cost, and corrosion resistance, becoming the key material for solving device electromagnetic interference problem. However, most of the polymer materials currently used are synthetic polymers, and their extensive use causes serious environmental pollution and non-renewable resource consumption. As a natural polymer material, cellulose has abundant sources, huge reserves, renewable, and biodegradable characteristics, which can be processed into films, hydrogels, aerogels, fibers, and other materials. Among them, cellulose porous composites exhibit excellent comprehensive performance in electromagnetic shielding. The three-dimensional network structure of cellulose porous materials is not only conducive to the construction of conductive pathways but also beneficial to reducing the impedance mismatch between air and materials, thereby improving the absorption efficiency of electromagnetic waves. Therefore, it is of great significance to construct electromagnetic shielding materials dominated by absorption by using cellulose porous materials. On the other hand, two-dimensional transition metal carbides/nitrides (MXenes) have become the best materials for electromagnetic shielding performance in synthetic materials due to their excellent conductivity, specific surface area, and special layered structure. Therefore, this study used Ti3C2TX-type MXene as a filler and cellulose porous material as a matrix to prepare cellulose-based electromagnetic shielding porous composites simultaneously with high absorption coefficient and high shielding efficiency. The density, infrared spectrum, Raman spectrum, microstructure, conductivity, electromagnetic shielding, and electric heating performance of the materials were characterized and tested. The effects of the microstructure of cellulose porous material, the content and distribution of MXene, and the carbonization treatment of the cellulose matrix on the electromagnetic shielding performance were studied. The main research contents are as follows:
(1) Cellulose porous materials were prepared by a “dissolution-freezing drying” process, and further MXene/cellulose porous composites were prepared using a vacuum-assisted impregnation method. By simply adjusting the tert-butanol (TBA) content in the freezing medium, the microstructure of the cellulose porous material was controlled from a micrometer-scale three-dimensional sheet structure to a nanometer-scale three-dimensional fibrous network structure. The results showed that when the TBA content in the freezing agent was 10%, the MXene/cellulose porous composite material exhibited the best electromagnetic shielding performance, mainly due to its suitable pore size and specific surface area. In addition, as the number of MXene impregnation cycles increased, the electromagnetic interference shielding efficiency (EMI SE) of the MXene/cellulose porous composite material also improved, reaching up to 46.8 dB, while the absorption coefficient reached 0.79. Finally, the prepared MXene/cellulose porous composite material also had excellent electric heating performance and thermomechanical properties, greatly expanding the application range of cellulose-based electromagnetic shielding porous materials.
(2) MXene was used as a conductive filler, and cellulose porous material was used as the matrix. A “Bottom to up-gradient impregnation-stepwise regulation” method was employed to prepare MXene/cellulose porous composite materials with concentration gradient distribution. The results showed that along the impregnation direction, MXene presented a concentration gradient distribution from high to low in the cellulose pore walls. The influence of the electromagnetic wave incident direction on the electromagnetic shielding performance was studied. When the electromagnetic wave is incident from the low to high concentration direction of MXene, the total EMI SE is similar to that when the electromagnetic wave is incident from the high to low concentration direction. However, the absorption coefficient in the low to high concentration direction (0.84) is much higher than that in the high to low concentration direction (0.54), and also higher than the absorption coefficient of MXene uniformly distributed cellulose porous composite material (0.76) and pure MXene film (0.26). Therefore, by controlling the concentration distribution state of MXene in the cellulose porous material, the absorption coefficient of the composites can be further optimized.
(3) MXene/carbonized cellulose porous materials were prepared by a “vacuum assisted impregnation-room temperature suction filtration” using MXene as conductive filler and carbonized cellulose porous materials as matrix. The results showed that the carbonization process improved the EMI SE of the cellulose porous material, reaching 30 dB at 800 ℃. The addition of MXene further increased the EMI SE of the carbonized cellulose porous material to 65 dB, which was 2.16 times higher than that without MXene, and the absorption coefficient also reached 0.81, effectively solving the contradiction between high electromagnetic shielding performance and high absorption coefficient reported in previous studies.
﹀
|
参考文献: |
︿
[1] Lu D, Mo Z, Liang B, et al. Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding [J]. Carbon, 2018, 133:457-463. [2] 贺灿花, 麦金蝉. 地铁高架车防雷与电磁屏蔽探讨 [J]. 气象研究与应用, 2018, 39(4):89-91. [3] Verma M L, Dhanya B S, Rani V, et al. Carbohydrate and protein based biopolymeric nanoparticles: current status and biotechnological applications [J]. International Journal of Biological Macromolecules, 2020, 154:390-412. [4] Banu H A T, Karthikeyan P, Vigneshwaran S, et al. Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water [J]. International Journal of Biological Macromolecules, 2020, 154:188-197 [5] Dhaware V, Diaz Diaz D, Sen Gupta S. Biopolymer/Glycopolypeptide-Blended Scaffolds: Synthesis, Characterization and Cellular Interactions [J]. Chemistry-An Asian Journal, 2019, 14(24):4837-4846. [6] Jimenez-Saelices C, Seantier B, Cathala B, et al. Spray freeze-dried nano fibrillated cellulose porous materials with thermal super insulating properties [J]. Carbohydrate Polymers, 2017, 157:105-113. [7] Gupta H, Kumar H, Kumar M, et al. Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material [J]. Environmental Engineering Research, 2020, 25(4):506-514. [8] Netto M M O, Gonçalves W B, Li R W C, et al. Biopolymer based ionogels as active layers in low-cost gas sensors for electronic noses [J]. Sensors and Actuators B: Chemical, 2020, 315:128025. [9] Wang J, Ran R, Sunarso J, et al. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide porous materials [J]. Journal of Power Sources, 2017, 347:259-269. [10] Otsuka I, Njinang C N, Borsali R. Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate [J]. Cellulose, 2017, 24(8):3281-3288. [11] 庆毅.电磁场与电磁波在电子通信技术中的应用研究 [J]. 信息通信, 2018, (7):85-86 [12] 刘琳, 张东. 电磁屏蔽材料的研究进展 [J]. 功能材料, 2015, 46(3):19-25. [13] 孙天, 赵晓明. 电磁屏蔽材料的研究进展 [J]. 纺织科学与工程学报, 2018, 35(2):118-122. [14] Sankaran S, Deshmukh K, Ahamed M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review [J]. Composites Part A: Applied Science and Manufacturing, 2018, 114:49-71. [15] 赵蒙, 达新宇, 张亚普. 电磁脉冲武器及其防护技术概述 [J]. 飞航导弹, 2014(5):33-37 [16] 徐文涛, 刘旭, 李义香, 等. 5G 通信基站电磁屏蔽材料及应用 [J]. 军民两用技术与产品, 2020, 437(3):29-34. [17] 孔静, 高鸿, 李岩, 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展 [J]. 材料导报, 2020, 34(5):9055-9062. [18] 石慧宇, 李萍, 马莹. 高强度电磁辐射对人体产生的危害及有效防护 [J]. 中国新技术新产品, 2010, (23):19. [19] 陆颖健, 严明, 高屹. 电磁屏蔽材料的屏蔽机理及现状分析 [J]. 价值工程.2019, 38(1):159-162. [20] Sage C Burgio E. Electromagnetic fields, pulsed radiofrequency radiation, and epigenetics: how wireless technologies may affect childhood development [J]. Child Development, 2018, 89(1):129-136. [21] Frohlich H. What are non-thermal electric biological effects [J]. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, 1982, 3(1):45-46. [22] 赵鸿, 罗海, 韦嵘晖, 等. 关于城区高压变电站电磁辐射对周边居民生活和环境的影响 [J]. 广东电力, 2006, 19(2):31-35. [23] 赵灵智, 胡社军, 何琴玉, 等. 电磁屏蔽材料的屏蔽原理与研究现状 [J]. 包装工程, 2006, 27(02):1-4. [24] 殷红玉, 马通边. 屏蔽材料的屏蔽效率测量方法探讨 [J]. 电子材料与电子技术, 2005, 32(2):11-13. [25] Abbasi H, Antunes M, Velasco J I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding [J]. Progress in Materials Science, 2019, 103:319-373. [26] Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding [J]. Carbon, 2018, 140:696-733. [27] Wanasinghe D, Aslani F, Ma G, et al. Advancements in electromagnetic interference shielding cementitious composites [J]. Construction and Building Materials, 2020, 231:117116. [28] 王睿, 万怡灶, 何芳, 等. 碳纤维连续镀镍生产工艺及其屏蔽多孔材料 [J]. 多孔材料学报, 2010, 27(5):19-23. [29] Cheng K B. Production and electromagnetic shielding effectiveness of the knitted stainless steel/polyester fabrics [J]. Journal of Textile Engineering, 2000, 46(2):42-52. [30] Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers [J]. Applied Physics Letters, 1994, 65(18):2278-2280. [31] Tantawy H R, Aston D E, Smith J R, et al. Comparison of electromagnetic shielding with polyaniline nanopowders produced in solvent-limited conditions [J]. ACS Applied Materials & Interfaces, 2013, 5(11):4648-4658. [32] Ohlan A, Singh K, Dhawan S K. Shielding and dielectric properties of sulfonic acid-doped π-conjugated polymer in 8.2-12.4 GHz frequency range [J]. Journal of Applied Polymer Science, 2010, 115(1):498-503. [33] Rezania J, Rahimi H. Investigating the carbon materials’ microwave absorption and its effects on the mechanical and physical properties of carbon fiber and carbon black/polypropylene composites [J]. Journal of Composite Materials, 2017, 51(16):2263-2276. [34] 洪龙晖. 炭黑/PP/PA6 电磁屏蔽多孔材料性能研究 [J]. 轻工科技, 2014(07) [35] 段玉平, 刘顺华, 胡雅琴, 等. 炭黑/ABS高密度复合体的电性能与电磁特性 [J]. 功能材料, 2006, 37(1):36-39. [36] Yadav R S, Kuritka I, Vilcakova J, et al. Polypropylene nanocomposite filled with spinel ferrite NiFe2O4 nanoparticles and in-situ thermally-reduced graphene oxide for electromagnetic interference shielding application [J]. Nanomaterials, 2019, 9(4):621. [37] He L, Shi Y, Wang Q, et al. Strategy for constructing electromagnetic interference shielding and flame retarding synergistic network in poly (butylene succinate) and thermoplastic polyurethane multilayered composites [J]. Composites Science and Technology, 2020, 199:108324. [38] Dun D, Luo J, Wang M, et al. Electromagnetic interference shielding foams based on poly (vinylidene fluoride)/carbon nanotubes composite [J]. Macromolecular Materials and Engineering, 2021, 306(12):2100468. [39] Chen Z, Xu C, Ma C, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding [J]. Advanced Materials, 2013, 25(9):1296-1300. [40] Wang Y Y, Zhou Z H, Zhou C G, et al. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption [J]. ACS Applied Materials & Interfaces, 2020, 12(7):8704-8712. [41] Chen Y, Potschke P, Pionteck J, et al. Multifunctional cellulose/rGO/Fe3O4 composite porous materials for electromagnetic interference shielding [J]. ACS Applied Materials & Interfaces, 2020, 12(19):22088-22098. [42] Hu M, Gao J, Dong Y, et al. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding [J]. Langmuir, 2012, 28(18):7101-7106. [43] Liang C, Song P, Ma A, et al. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution [J]. Composites Science and Technology, 2019, 181:107683. [44] Shen B, Zhai W, Tao M, et al. Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution [J]. ACS Applied Materials & Interfaces, 2013, 5(21):11383-11391. [45] Shen B, Li Y, Zhai W, et al. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding [J]. ACS Applied Materials & Interfaces, 2016, 8(12):8050-8057. [46] Cai J H, Li J, Chen X D, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor [J]. Chemical Engineering Journal, 2020, 393:124805. [47] Huang H D, Liu C Y, Zhou D, et al. Cellulose composite porous materials for highly efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry A, 2015, 3(9):4983-4991. [48] Li L, Ma Z, Xu P, et al. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding [J]. Composites Part A: Applied Science and Manufacturing, 2020, 139:106134. [49] Cao W, Ma C, Tan S, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding [J]. Nano-Micro Letters, 2019, 11:1-17. [50] Zeng Z, Jin H, Chen M, et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26(2):303-310. [51] Wan C, Jiao Y, Qiang T, et al. Cellulose-derived carbon porous materials supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding [J]. Carbohydrate Polymers, 2017, 156:427-434. [52] 付时雨. 纤维素的研究进展 [J]. 中国造纸, 2019, 38(6):54-64. [53] Singh S, Tripathi P, Bhatnagar A, et al. A highly porous, light weight 3D sponge like graphene porous materials for electromagnetic interference shielding applications [J]. RSC Advances, 2015, 5(129):107083-107087. [54] Lavoine N, Desloges I, Dufresne A, et al. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review [J]. Carbohydrate Polymers, 2012, 90(2):735-764. [55] Khalil H P S A, Bhat A H, Yusra A F I. Green composites from sustainable cellulose nanofibrils: A review [J]. Carbohydrate Polymers, 2012, 87(2):963-979. [56] Yun S, Jang S D, Yun G Y, et al. Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose [J]. Applied Physics Letters, 2009, 95(10):104102 [57] Yamazaki S, Takegawa A, Kaneko Y, et al. An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor [J]. Electrochemistry Communications, 2009, 11(1):68-70. [58] Shah J, Malcolm Brown R. Towards electronic paper displays made from microbial cellulose [J]. Applied Microbiology and Biotechnology, 2005, 66:352-355. [59] Fugetsu B, Sano E, Sunada M, et al. Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper [J]. Carbon, 2008, 46(9):1256-1258. [60] 李金宝, 马飞燕, 修慧娟, 等. 碱预处理对制备微晶纤维素的影响 [J]. China Pulp & Paper, 2020, 39(1). [61] 朱斌, 曾淼, 刘林, 等. 微晶纤维素的制备及在医药工业上的应用 [J]. 广东化工, 2017, 44(8):108-109. [62] Yang Q L, Yang J W, Shi Z Q, et al. Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices [J]. Journal of Forestry Engineering, 2018, 3(3):1-11. [63] 袁晔, 范子千, 沈青. 纳米纤维素研究及应用进展Ⅰ [J]. 高分子通报, 2010 (2):75-79. [64] 孙建磊, 张胜靖, 李龙. 再生纤维素纤维的研究进展 [J]. 合成纤维工业, 2010 (5):49-51. [65] Zhang L Q, Yang S G, Li L, et al. Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding [J]. ACS Applied Materials & Interfaces, 2018, 10(46):40156-40167. [66] Zhou B, Zhang Z, Li Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers [J]. ACS Applied Materials & Interfaces, 2020, 12(4):4895-4905. [67] Ma M, Liao X, Chu Q, et al. Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties [J]. Composites Science and Technology, 2022, 226:109540. [68] Wan Y J, Zhu P L, Yu S H, et al. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene porous materials for high-performance electromagnetic interference shielding [J]. Carbon, 2017, 115:629-639. [69] Naguib M, Mochalin V N, Barsoum M W, et al.: MXenes: a new family of two-dimensional materials [J]. Advanced materials, 2014, 26(7):992-1005. [70] Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries [J]. Electrochemistry Communications, 2012, 16(1):61-64. [71] Michael N, Mochalin V N, Barsoum M W, et al. MXenes: a new family of two-dimensional materials [J]. Advanced Materials, 2014, 26(7):992-1005. [72] Zhou C, Zhao X, Xiong Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels [J]. European Polymer Journal, 2022:111063. [73] Firouzjaei M D, Karimiziarani M, Moradkhani H, et al. MXenes: The two-dimensional influencers [J]. Materials Today Advances, 2022, 13:100202. [74] Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX_MXene) [J]. Chemistry of Materials, 2017, 29(18):7633-7644. [75] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37):4248-4253. [76] Xu H, Yin X, Li X, et al. Lightweight Ti2CTX_MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature [J]. ACS Applied Materials & Interfaces, 2019, 11(10):10198-10207. [77] Cao W T, Chen F F, Zhu Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties [J]. ACS Nano, 2018, 12(5):4583-4593. [78] Cui C, Xiang C, Geng L, et al. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2TX (MXene) composite film for electromagnetic interference shielding [J]. Journal of Alloys and Compounds, 2019, 788:1246-1255. [79] Yang W, Zhao Z, Wu K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2017, 5(15):3748-3756. [80] Xie F, Jia F, Zhuo L, et al. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding [J]. Nanoscale, 2019, 11(48):23382-23391. [81] Weng G M, Li J, Alhabeb M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding [J]. Advanced Functional Materials, 2018, 28(44):1803360. [82] Han M, Yin X, Wu H, et al. Ti3C2TX_MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band [J]. ACS Applied Materials & Interfaces, 2016, 8(32):21011-21019. [83] Song P, Qiu H, Wang L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance [J]. Sustainable Materials and Technologies, 2020, 24:e00153. [84] Wang Q W, Zhang H B, Liu J, et al. Multifunctional and wat-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances [J]. Advanced Functional Materials, 2019, 29(7):1806819. [85] Liu R, Miao M, Li Y, et al. Ultrathin biomimetic polymeric Ti3C2TX_MXene composite films for electromagnetic interference shielding [J]. ACS Applied Materials & Interfaces, 2018, 10(51):44787-44795. [86] Wang L, Chen L, Song P, et al. Fabrication on the annealed Ti3C2TX_MXene/Epoxy nanocomposites for electromagnetic interference shielding application [J]. Composites Part B: Engineering, 2019, 171:111-118. [87] Wang L, Qiu H, Song P, et al. 3D Ti3C2TX_MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties [J]. Composites Part A: Applied Science and Manufacturing, 2019, 123:293-300. [88] Xin W, Xi G Q, Cao W T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding [J]. RSC Advances, 2019, 9(51):29636-29644. [89] Wu X, Han B, Zhang H B, et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding [J]. Chemical Engineering Journal, 2020, 381:122622. [90] Jin X, Wang J, Dai L, et al. Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances [J]. Chemical Engineering Journal, 2020, 380:122475. [91] Zhou Z, Liu J, Zhang X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding [J]. Advanced Materials Interfaces, 2019, 6(6):1802040. [92] Zhan Z, Song Q, Zhou Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding [J]. Journal of Materials Chemistry C, 2019, 7(32):9820-9829. [93] Chen Y, Luo H, Guo H, et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss [J]. Carbohydrate Polymers, 2022, 276:118799. [94] Ma M, Tao W, Liao X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding [J]. Chemical Engineering Journal, 2023, 452:139471. [95] Zhou M, Wang J, Tan S, et al. Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding [J]. Materials Today Physics, 2023:100962. [96] Hu G, Wu C, Wang Q, et al. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties [J]. Chemical Engineering Journal, 2022, 447:137537. [97] Wang G, Lai D, Xu X, et al. Lightweight, stiff and heat-resistant bamboo-derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding [J]. Chemical Engineering Journal, 2022, 446:136911. [98] Zhu M, Yan X, Lei Y, et al. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding [J]. ACS Applied Materials & Interfaces, 2022, 14(12):14520-14531. [99] Bhawal P, Ganguly S, Das T K, et al. Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites [J]. Composites Part B: Engineering, 2018, 134:46-60. [100] Wang Z, Fu X, Zhang Z, et al. Based metasurface: Turning waste-paper into a solution for electromagnetic pollution [J]. Journal of Cleaner Production, 2019, 234:588-596. [101] Jia L C, Xu L, Ren F, et al. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding [J]. Carbon, 2019, 144:101-108. [102] Zhong B, Wang C, Wen G, et al. Facile fabrication of boron and nitrogen co-doped carbon/Fe2O3/Fe3C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties [J]. Composites Part B: Engineering, 2018, 132:141-150. [103] Wang M, Wang H, An L, et al. Facile fabrication of Hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption [J]. Journal of Colloid and Interface Science, 2020, 564:454-466. [104] Zhong B, Wang C, Yu Y, et al. Facile fabrication of carbon microspheres decorated with B (OH)3 and α-Fe2O3 nanoparticles: Superior microwave absorption [J]. Journal of Colloid and Interface Science, 2017, 505:402-409. [105] Li C, Zhou C, Lv J, et al. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam [J]. Carbon, 2019, 149:190-202. [106] Li J, Ding Y, Yu N, et al. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance [J]. Carbon, 2020, 158:45-54.
﹀
|
中图分类号: |
TB334
|
开放日期: |
2024-06-19
|