- 无标题文档
查看论文信息

论文中文题名:

 PVA-WG凝胶泡沫的研发及阻化煤自燃特性研究    

姓名:

 路旭    

学号:

 20220089039    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张玉涛    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Research on the development of PVA-WG gel foam and its inhibition characteristics to the spontaneous combustion of coal    

论文中文关键词:

 煤自燃 ; 凝胶泡沫 ; 热稳定性 ; 表观活化能 ; 阻化特性    

论文外文关键词:

 Coal spontaneous combustion ; Gel foam ; Thermal stability ; Apparent activation energy ; Resistive properties    

论文中文摘要:

煤自燃作为引起矿井火灾问题的重要原因之一,严重威胁井下作业人员的生命财产安全。为保证矿井的安全开采,目前煤矿行业常用的凝胶泡沫技术对于矿井火灾的治理有一定成效,但仍存在稳定性差、保水能力弱、粘弹性低的缺点。本文以硅酸钠和碳酸氢钠为原料,向其中引入聚乙烯醇进行改性,制备聚乙烯醇-水玻璃(PVA-WG)凝胶泡沫材料,通过对其基础特性和阻化性能的研究掌握PVA-WG凝胶泡沫抑制煤自燃的机理。

通过正交实验验证并确定水玻璃凝胶泡沫配方中各个组分的最佳配比。利用共混法制备PVA-WG凝胶泡沫,综合成胶时间和发泡体积初选五种聚乙烯醇(PVA)和乙二醇(EG)的浓度配比。通过凝胶强度、流动性和热稳定性实验测定改性后凝胶泡沫的基础性能,对优选出的阻化材料和灭火材料进行阻化性能研究。

利用同步热分析实验得到处理煤样在煤自燃过程中质量和热量的变化规律,结果表明PVA-WG凝胶泡沫的加入使特征温度点向高温区移动,相邻两个特征温度点的距离被延长;反应过程中的PVA-WG凝胶泡沫处理煤样较原煤吸热量增加放热量减少;处理煤样的着火稳定性指数Rw、可燃性指数Sw和燃烧特性指数S较原煤均有降低,证明改性后的凝胶泡沫对煤自燃的抑制效果持续于整个氧化升温过程中。通过程序升温实验对比研究PVA-WG凝胶泡沫的阻化性能,实验结果发现,改性的凝胶泡沫较水玻璃凝胶泡沫具有更好的阻化作用,P3E7和P5E5处理煤样在低温氧化过程中CO释放量最大为7409.26ppm和6858.55ppm,整个实验过程中的平均阻化率可达54.50%和58.19%,两组煤样的活化能升高。通过高温灭火实验研究PVA-WG凝胶泡沫的灭火性能,材料首先通过保水性浸湿煤体、对煤体表面进行覆盖,通过煤体裂隙进行渗流,凝胶体系形成之后通过隔绝氧气的作用降低煤体温度,扑灭高温火灾。PVA的引入使水玻璃凝胶泡沫的稳定性增强,抗温性提高。通过傅里叶红外光谱实验测试分析常温下原煤样和处理煤样的主要官能团分布规律,结果表明PVA和EG的引入增加了煤分子中游离羟基的含量,-COOH和C=O的含量下降,结合DSC曲线得出PVA在煤自燃过程中起到化学阻化作用,通过捕获煤分子中的活性官能团阻断煤氧化学链式反应,进而抑制煤自燃。

论文外文摘要:

Spontaneous coal combustion, as one of the major causes of mine fires, is a serious threat to the lives and property of underground workers. In order to ensure safe mining, the gel foam technology commonly used in the coal mining industry is effective in the management of mine fires but still has the disadvantages of poor stability, weak water retention capacity and low viscoelasticity. In this paper, sodium silicate and sodium bicarbonate are used as raw materials to introduce polyvinyl alcohol into them for modification to prepare polyvinyl alcohol water glass (PVA-WG) gel foam material. Through the study of its basic characteristics and inhibition performance, the mechanism of PVA-WG gel foam inhibiting coal spontaneous combustion is mastered.

The optimum ratio of each component in the formulation of the water-glass gel foam is verified and determined by orthogonal experiments. Five concentration ratios of polyvinyl alcohol (PVA) and ethylene glycol (EG) were introduced into the water-glass gel foam by combining gel formation time and foaming volume to prepare PVA-WG gel foam using the blending method. The basic properties of the modified gel foam were determined by the strength, fluidity and thermal stability experiments of the gel, and the inhibition properties of the selected inhibitor and fire extinguishing materials were studied.

The variation law of mass and heat of coal samples treated with gel foam in the process of coal spontaneous combustion is obtained by synchronous thermal analysis experiment. The results showed that the addition of PVA-WG gel foam shifted the characteristic temperature point to the high temperature region, and the distance between two adjacent characteristic temperature points was extended. The PVA-WG gel foam treated coal sample in the reaction process has more heat absorption and less heat release than raw coal. The ignition stability index (Rw), flammability index (Sw) and combustion characteristic index (S) of treated coal samples were all reduced compared with the original coal, proving that the inhibitory effect of the modified gel foam on coal spontaneous combustion continued throughout the oxidation warming process. The inhibition performance of PVA-WG gel foam was comparatively studied through temperature programmed experiments. The experimental results showed that the modified gel foam had a better inhibition effect than the traditional water glass gel foam. The maximum CO release of P3E7 and P5E5 treated coal samples during low-temperature oxidation was 7409.26ppm and 6858.55ppm, and the average inhibition rate in the whole experiment process reached 54.50% and 58.19%, the activation energy of two sets of coal samples increases. The fire extinguishing performance of PVA-WG gel foam is studied through high temperature fire extinguishing experiment. The material first soaks the coal body through water retention, covers the coal body surface, and percolates through the coal body cracks. After the formation of the gel system, the coal body temperature is reduced by isolating oxygen, and the high temperature fire is extinguished. The introduction of PVA enhanced the stability and temperature resistance of foam of water glass gel foam. Fourier transform infrared spectroscopy was used to test and analyze the distribution patterns of the main functional groups in raw coal samples and processed coal samples at room temperature. The experimental results showed that the introduction of PVA and EG increased the content of free hydroxyl groups in coal molecules, while the content of -COOH and C=O decreased. Based on the exothermic characteristics of DSC curves, it was inferred that PVA played a chemical hindrance role in the spontaneous coal combustion process. By capturing the active groups in coal molecules, the chemical chain reaction of coal oxygen adsorption was blocked and then suppress spontaneous coal combustion.

参考文献:

[1]高宏杰. 煤炭行业发展现状和供需形势分析[J]. 中国煤炭工业, 2022, No.421(03): 75-77.

[2]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[3]李胜利, 焦博朋. 如何做好煤矿矿井防灭火[J]. 内蒙古煤炭经济, 2020(13): 114-115.

[4]张天宇, 鲁义, 施式亮, 等. 基于支持向量机分类算法的多煤种煤自燃危险性预测[J]. 湖南科技大学学报(自然科学版), 2019, 34(02): 11-17.

[5]林柏泉, 李庆钊, 周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报, 2021, 46(06): 1715-1726.

[6]邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125.

[7]郭庆. 采空区煤自燃预警技术及应用研究[D]. 徐州: 中国矿业大学, 2021.

[8]邓军, 杨囡囡, 王彩萍, 等. 采空区煤自燃“防-抑-灭”协同防灭火关键技术[J]. 煤矿安全, 2022, 53(09): 1-8.

[9]姜青峰. 浅谈煤矿采空区防灭火技术研究现状与发展趋势[J]. 中国设备工程, 2021, 486(22): 195-196.

[10]余明高, 王亮, 李海涛, 等. 我国煤矿防灭火材料的研究现状及发展趋势[J]. 矿业安全与环保, 2022, 49(04): 22-36.

[11]韦健. 水成膜凝胶泡沫的制备及防灭火特性研究[D]. 淮南: 安徽理工大学, 2020.

[12]张运增, 杨英兵. 采空区防灭火注浆技术优化与实践[J]. 中国煤炭, 2022, 48(S2): 123-127.

[13]李中华, 宣鹏, 郭亚萍. 煤自燃现象发生机理及防治手段分析[J]. 内蒙古煤炭经济, 2021, 321(04): 86-87.

[14]赵建会, 张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究[J]. 煤炭学报, 2015, 40(02): 383-388.

[15]李小辉. 煤矿火灾防治技术的研究进展[J]. 煤炭加工与综合利用, 2019, 237(04): 63-67+71.

[16]Wang J R, Sun Y Q, Zhao Q F, et al. Basic theory research of coal spontaneous combustion[J]. Journal of Coal Science and Engineering (China), 2008, 14(2): 239-243.

[17]周福宝. 瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J]. 煤炭学报, 2012, 37(05): 843-849.

[18]Kong B, Li Z H, Yang Y L, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China[J]. Environmental science and pollution research international, 2017, 24(30): 23453-23470.

[19]邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(04): 455-459.

[20]牛会永, 张辛亥. 煤炭自燃机理及防治技术分类研究[J]. 工业安全与环保, 2007(10): 45-48.

[21]王继仁, 邓存宝. 煤微观结构与组分量质差异自燃理论[J]. 煤炭学报, 2007(12): 1291-1296.

[22]Singh R N, Shonhardt J A, Terezopoulos N. A new dimension to studies of spontaneous combustion of coal[J]. Mineral Resources Engineering, 2002, 11(2): 147-163.

[23]徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001.

[24]徐精彩, 薛韩玲, 文虎, 等.煤氧复合热效应的影响因素分析[J]. 中国安全科学学报, 2001(02): 34-39.

[25]李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(3): 111-114.

[26]Wang H, Dlugogorski B Z, Kennedy E M. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling[J]. Progress in Energy and Combustion Science, 2003, 29: 487-513.

[27]邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(04): 455-459.

[28]姬玉成. 抗氧化凝胶泡沫防遗煤自燃机理研究[D]. 北京: 北京科技大学, 2022.

[29]徐精彩, 邓军, 文虎, 等. 耐温高水胶体直接灭火技术在煤层自燃火灾中的应用[J]. 矿业安全与环保, 2000(01): 44-45.

[30]贺飞, 王继仁, 郝朝瑜, 等. 脱氧型阻化剂对煤自燃的抑制效果[J]. 煤炭学报, 2016, 41(11): 2780-2785.

[31]曲宗波, 王绪友. 偏铝酸钠作为煤矿防灭火凝胶促凝剂技术可行性探讨[J]. 煤矿现代化, 2005(02): 74-75.

[32]Demina T S, Zaytseva‐Zotova D S, Akopova T A, et al. Macroporous hydrogels based on chitosan derivatives: Preparation, characterization, and in vitro evaluation[J]. Journal of Applied Polymer Science, 2017, 134(13): 44645-44651.

[33]Sun Y Y, Deng Z F, Tian Y, et al. Horseradish peroxidase‐mediated in situ forming hydrogels from degradable tyramine‐based poly(amido amine)s[J]. Journal of Applied Polymer Science, 2012, 127(1): 40-48.

[34]Ren X F, Hu X M, Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of Hazardous Materials, 2019, 371: 643-654.

[35]聂士斌, 邢时超, 韩超, 等. 防治煤矿火灾的凝胶材料制备及其性能研究[J]. 中国安全科学学报, 2020, 30(09): 115-120.

[36]Cheng W M, Hu X M, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties[J]. Fuel, 2017, 210: 826-835.

[37]王毅泽, 董凯丽, 张玉龙, 等. CMC/ZrCit/GDL防灭火凝胶泡沫的制备及特性研究[J/OL]. 煤炭科学技术: 1-10.

[38]陈鹏燕, 周春山, 程熙宇. CMC/AlCit/GDL防灭火凝胶的流变性能及本构方程研究[J/OL]. 应用化工: 1-7.

[39]王晓峰, 王俊峰, 唐一博. BENT/AM/AA高吸水凝胶防治煤矿火灾实验研究[J]. 煤矿安全, 2018, 49(07): 19-23.

[40]Tsai Y T, Yang Y, Wang C P, et al. Comparison of the inhibition mechanisms of five types of inhibitors on spontaneous coal combustion[J]. International Journal of Energy Research, 2018, 42(3): 1158-1171.

[41]Li Y S, Hu X M, Cheng W M, et al. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature[J]. Fuel, 2020, 263(C).

[42]王楠. 煤自然发火胶体防灭火材料性能实验研究[D]. 西安: 西安科技大学, 2011.

[43]徐精彩, 张辛亥, 文虎. 煤层自燃胶体防灭火理论与技术[M]. 北京: 煤炭工业出版社, 2003.

[44]黄艳芹. 一种改性防灭火复合胶体材料的制备[J]. 中州大学学报, 2013, 30(04): 106-109.

[45]苏健. 煤矿用防灭火材料的制备与性能研究[D]. 北京: 北京工业大学, 2016.

[46]赵春瑞, 张锡佑, 余大洋, 等. 复合胶体防灭火材料的制备及其性能试验研究[J]. 中国煤炭, 2015, 41(11): 93-96.

[47]陈凯. 粉煤灰稠化胶体的制备及防灭火特性研究[D]. 徐州: 中国矿业大学, 2020.

[48]王德明, 李增华, 秦波涛, 等. 一种防治矿井火灾的绿色环保新材料的研制[J]. 中国矿业大学学报, 2004(02): 81-84.

[49]邓军, 徐精彩, 张辛亥. 稠化胶体防灭火特性实验研究[J]. 西安科技学院学报, 2001(02): 102-105+122.

[50]黄艳芹. 稠化胶体防灭火材料的性能研究[J]. 消防科学与技术, 2013, 32(08): 894-896.

[51]张易. 矿用黄土悬浮稠化胶体防灭火研究[J]. 能源与节能, 2020(11): 172-173+190.

[52]秦波涛, 冯乐乐, 蒋文婕, 等. 矿井泡沫防灭火技术研究进展[J]. 煤炭科技, 2022, 43(05): 1-12+26.

[53]王振平, 王洪权, 宋先明, 等. 惰气泡沫防灭火技术在兴隆庄煤矿的应用[J]. 煤矿安全, 2004(12): 26-28.

[54]唐耀勇, 王保齐. 高效CO2惰泡防灭火技术及装备的研究与应用[J]. 煤矿现代化, 2003(03): 24-25.

[55]王馨, 严震海, 武红梅. 水成膜泡沫与超细干粉灭火剂联合灭火试验[J]. 船海工程, 2017, 46(03): 41-45+49.

[56]杨海. 矿用固化泡沫防灭火密闭充填新技术[J]. 煤矿安全, 2005(10): 28-30.

[57]奚志林, 王德明, 郭新安, 等. 矿用有机固化泡沫配方研究[J]. 煤矿安全, 2010, 41(04): 6-9.

[58]秦波涛. 煤矿防灭火粉煤灰固化泡沫的研制及应用[J]. 金属矿山, 2008, 382(04): 139-141+148.

[59]史美静. 固体泡沫封堵材料特性实验研究[D]. 阜新: 辽宁工程技术大学, 2012.

[60]易欣, 康付如, 邓军, 等. 矿用无机固化泡沫充填材料研究及应用[J]. 中国安全生产科学技术, 2017, 13(10): 136-142.

[61]秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66-99.

[62]秦波涛, 王德明. 三相泡沫防治煤炭自燃的特性及应用[J]. 北京科技大学学报, 2007(10): 971-974+1004.

[63]周福宝, 宋体良, 王德明, 等. 特大型火区的地面钻孔注三相泡沫灭火技术[J]. 煤炭科学技术, 2005(07): 1-3.

[64]秦波涛, 王德明, 陈建华, 等. 粉煤灰三相泡沫组成成分及形成机理研究[J]. 煤炭学报, 2005(02): 155-159.

[65]王增林, 亓翔, 何绍群, 等. 粉煤灰三相泡沫的制备及其稳定机制[J]. 中国石油大学学报(自然科学版), 2020, 44(05): 166-176.

[66]李秀娟. 微粒浓度对三相泡沫灭火剂性能影响研究[J]. 武警学院学报, 2018, 34(10): 18-23.

[67]时国庆. 防灭火三相泡沫在采空区中的流动特性与应用[J]. 煤炭学报, 2011, 36(02): 355-356.

[68]Qin B T, Jia Y W, Lu Y, et al. Micro fly-ash particles stabilized Pickering foams and its combustion-retardant characteristics[J]. Fuel, 2015, 154: 174-180.

[69]陆新晓, 赵鸿儒, 薛雪, 等. 凝胶泡沫对原煤自燃的阻化特性实验研究[J]. 煤矿安全, 2019, 50(01): 33-37.

[70]田兆君, 王德明, 徐永亮, 等. 矿用防灭火凝胶泡沫的研究[J]. 中国矿业大学学报, 2010, 39(02): 169-172+189.

[71]张雷林. 防治煤自燃的凝胶泡沫及特性研究[D]. 徐州: 中国矿业大学, 2014.

[72]朱树来. 防治煤自燃的泡沫凝胶防灭火特性研究[J]. 煤炭科学技术, 2019, 47(10): 223-228.

[73]Shi Y, Wang N, Liu L, et al. Surface sedimentation and adherence of Nano‐SiO2 to improve thermal stability and flame resistance of melamine‐formaldehyde foam via sol‐gel method[J]. Fire and Materials, 2018, 42(2): 183-189.

[74]Zhao H K, Zhang K H, Rui S P, et al. Study on microcrystalline cellulose/chitosan blend foam gel material[J]. Science and Engineering of Composite Materials, 2020, 27(1): 424-432.

[75]Wang G, Yan G Q, Zhang X H, et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 474-486.

[76]谢振华, 栾婷婷, 张宇. 凝胶泡沫防灭火材料的研制及应用[J]. 华北科技学院学报, 2014, 11(02): 42-47+58.

[77]任万兴, 郭庆, 左兵召, 等. 泡沫凝胶防治煤炭自燃的特性与机理[J]. 煤炭学报, 2015, 40(S2): 401-406.

[78]张新花, 颜国强, 黄启铭. 矿用凝胶泡沫防灭火材料的研究[J]. 矿业安全与环保, 2014, 41(06): 5-8+12.

[79]贾春雷, 蒋仲安, 杨漪, 等. 温敏性高分子水凝胶制备及灭火性能研究[J]. 功能材料, 2013, 44(11): 1593-1597.

[80]任万兴. 煤矿井下泡沫除尘理论与技术研究[D]. 徐州: 中国矿业大学, 2009.

[81]万里平, 孟英峰, 赵晓东. 十二醇甘油醚磺酸盐的合成与性能研究[J]. 化学研究, 2002(04): 16-20.

[82]田兆君. 煤矿防灭火凝胶泡沫的理论与技术研究[D]. 徐州: 中国矿业大学, 2009.

[83]董凯丽, 王俊峰, 梁择文, 等. 矿用CMC/ZrCit/GDL防灭火凝胶特性研究[J]. 中国安全科学学报, 2020, 30(01): 114-120.

[84]于水军, 赵红, 孟国栋, 等. 一种新型泡沫凝胶成胶时间及灭火特性的实验研究[J]. 火灾科学, 2013, 22(04): 219-225.

[85]Lambert D W, Greenwood P H, Reed M C, et al.阀控铅酸蓄电池中胶体电解液技术进展[J].电源技术, 2005(10): 69-73.

[86]孙小祥, 范泽婷, 赵剑曦, 等. 气相二氧化硅凝胶强度的落管式测定方法[J]. 蓄电池, 2012, 49(03): 103-106.

[87]高美玲. 聚乙烯醇复合交联半透膜的设计及其性能调控[D]. 淮南: 安徽理工大学, 2022.

[88]朱红青, 沈静, 张亚光. 升温速率和氧浓度对煤表观活化能的影响[J]. 煤炭科学技术, 2015, 43(11): 49-53+106.

[89]张辛亥, 白亚娥, 李亚清, 等. 煤升温氧化动力学阶段性规律[J]. 西安科技大学学报, 2017, 37(04): 474-478.

[90]李志勇, 刘星乐, 辛民, 等. 综放工作面煤自燃的特征温度点分析及影响规律实验研究[J]. 煤矿现代化, 2023, 32(01): 49-53.

[91]潘玄, 段伦博, 赵伶玲, 等. 生物质混煤富氧燃烧热重实验研究[C]//浙江省科协, 上海市科协, 江苏省科协. 推进能源生产和消费革命——第十届长三角能源论坛论文集, 2013: 283-289+296.

[92]张玉涛, 史学强, 李亚清, 等. 锌镁铝层状双氢氧化物对煤自燃的阻化特性[J]. 煤炭学报, 2017, 42(11): 2892-2899.

[93]马砺, 向崎, 任立峰. 阻化煤样的初次/二次氧化特性实验研究[J]. 西安科技大学学报, 2015, 35(06): 702-707.

[94]马砺, 雷昌奎, 王凯, 等. 高地温环境对煤自燃危险性影响试验研究[J]. 煤炭科学技术, 2016, 44(01): 144-148+156.

[95]王廷旭, 匡思维, 方庆艳, 等. O2/CO2 气氛下煤/生物质混燃特性实验研究[J]. 热力发电, 2017, 46(04): 16-21+38.

[96]韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11): 2293-2299.

[97]孙雯倩. 复合阻化剂抑制煤自燃过程的阶段阻化特性[D]. 兰州: 兰州理工大学, 2021.

[98]Teng M M, Li F T, Zhang B R, et al. Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1): 229-234.

[99]张玉涛, 张园勃, 李亚清, 等. 低瓦斯气氛下煤氧化热效应和关键基团演变特性[J]. 中国矿业大学学报, 2021, 50(04): 776-783.

中图分类号:

 TD752.2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式