- 无标题文档
查看论文信息

题名:

 液态CO2相变驱替煤层CH4钻孔压力脉动形成机制及演化规律    

作者:

 米万升    

学号:

 21120089021    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 文虎    

导师单位:

 西安科技大学    

提交日期:

 2024-12-16    

答辩日期:

 2024-12-01    

外文题名:

 Formation mechanism and evolution law of pressure pulsation in borehole during liquid CO2 phase change to displace coal seam CH4    

关键词:

 瓦斯抽采 ; 液态CO2 ; 相变驱替 ; 煤层钻孔 ; 压力脉动    

外文关键词:

 Gas extraction ; Liquid CO2 ; Phase change displacement ; Coalbed borehole ; Pressure pulsation    

摘要:

煤层瓦斯既是影响煤矿安全生产的重要风险源,同时又是应用前景广阔的清洁能源。我国煤层虽富含瓦斯,但大部分存在渗透率低、原始孔裂隙发育程度较低的特点,导致煤层瓦斯抽采困难,为此,必须实施人工干预强化抽采效果。基于液态CO2的吸热闪蒸、低粘强渗和相变增压特性,以及压注液态CO2在非常规油气藏领域增产效果显著,使得压注液态CO2相变驱替煤层CH4技术的应用愈发广泛;以往现场试验中发现液态CO2压注过程钻孔压力出现脉动变化且该时间段内瓦斯抽采效果明显增强,故如何在工程实践中充分发挥钻孔压力脉动对瓦斯抽采的强化作用将是进一步提高井下有限量罐装液态CO2驱替效果的关键,而揭示压注液态CO2钻孔压力脉动形成机制并掌握其演化规律是实现上述目标的科学基础。

本文综合运用理论分析、实验研究、数值模拟和现场试验等研究方法,围绕液态CO2相变驱替煤层CH4钻孔压力脉动形成机制及其影响因素、物理相似模拟实验系统设计与研制、钻孔压力脉动演化规律及孔内多场演变特征、压注参数优选及压力脉动表征预测模型验证和脉动驱替促抽效能评价等方面进行了系统地研究,取得的主要研究成果如下:

(1)建立了井下钻孔压注液态CO2相变驱替煤层CH4物理模型,通过分析钻孔内固-液-气多相态耦合传热过程,阐明了钻孔压力变化受注液压力、液态CO2相变压力和CO2渗出流量三因素共同调控的原理;基于理想气体状态方程推导了孔内液态CO2相变压力的数学表达式,结合热量计算公式,利用有效导热系数对液态CO2相变压力进行量化表征,通过开展等高不等直径煤样压注液态CO2过程有效导热系数随煤样表面温变规律测定实验,得出有效导热系数随孔周煤温的量化对应关系式;综合上述量化关系推导出三因素综合作用下钻孔压力脉动变化数学模型。

(2)基于相似原理这一模型试验方法,结合流体动力学和传热学理论,准确选取相似准则并结合本研究相似类别计算了原型和模型各同名物理量的相似比尺,推导了原型和模型注液压力的数学关系式;对模型容器进行耐压和厚壁传热效能测试,利用极限思维推算了环状恒温介质腔体等效半径为37mm且热量稳定传输所需的最小介质流速为3.5m/s,通过低温制冷稳定性、CO2供液连续性、腔体供热连续性和出口泄放平顺性等指标测试了实验系统运行状态良好。

(3)开展了井下钻孔压注液态CO2的物理相似模拟实验,厘清了注液压力、液态CO2相变压力和CO2渗出流量三因素各自对容器总压力脉动变化的影响规律,对影响钻孔压力脉动的注液压力、注液流量、注液温差、渗出压力和渗出流量五个关键参数进行相关性分析,得出了容器总压力脉动变化实时值的数学表达式,并将其变换为由注液压力和孔内温度作为自变量的表示形式,该结果验证了钻孔压力脉动变化数学模型;同时给出了容器总压力脉动变化特征指标值随注液压力和注液温差的变化规律。

(4)依据物理模拟实验中容器总压力脉动演化特征,以压力脉动变化幅值作为评价基准,从注液温差入手,得出液态CO2与容器内温度差为△Tz时,注入液态CO2后压力脉动波峰或波谷达到最大值对应的最佳注液压力Pz-波峰的数学表达式,通过计算该温压工况下的容器总压力脉动变化幅值和脉动周期,结合原型和模型注液压力的数学关系式,构建了井下钻孔注入液态CO2压注参数优选计算及压力脉动表征预测模型,并以假设案例预测了煤层为20℃时对应的最佳注液压力和钻孔压力脉动特征值。

(5)以井下钻孔压注液态CO2为原型,建立了液态CO2蒸发相变理论模型,编写包含相变潜热随温度变化的液态CO2蒸发相变UDF程序文件,选择与假设案例一致的煤层温度且以压注参数优选计算及压力脉动表征预测模型计算得出的注液压力作为模拟计算工况,利用Fluent软件进行瞬态求解,阐述了液态CO2压注过程钻孔内温度场、压力场和两相流场分布以及CO2气液比率演变特征,分析了钻孔内注液压力和液态CO2蒸发相变耦合作用下流体动力学特性,将数值模拟结果与模型预测结果进行对比验证,二者的压力脉动变化幅值这一表征基准值误差为6.3%,可认为基本一致。

(6)在与假设案例中相同温度的煤层,以预测模型优选注液压力为压注工况,开展了预测模型工程验证及钻孔压力脉动驱替煤层CH4促抽效能评价的原位试验,压注过程中钻孔压力出现脉动变化,且对于压力脉动变化幅值这一表征基准值与模型预测结果和数值模拟结果误差分别为12.5%和17.6%,而原位试验与模型预测结果中压力脉动周期、脉动波峰值、脉动波谷值和孔内液态CO2相变压力值的误差分别为2.9%、18.6%、19%和12.5%,误差满足工程精度需求,故工程验证进一步验证了压注参数优选计算及压力脉动表征预测模型的准确性和适用性。此外,利用煤层CO2有效影响半径、CH4抽采浓度、钻孔抽采混量和钻孔CH4抽采纯量对不同注液压力定量压注促抽效果进行分析,表明钻孔压力脉动驱替效果更好,其更能发挥井下有限量罐装液态CO2的驱替促抽效能。

外文摘要:

Coalbed methane is not only an important risk factor affecting coal mine safety production, but also a clean energy source with broad application prospects. Although coal seams in China are rich in methane, most of them have low permeability and strong gas adsorption characteristics, which makes coalbed methane extraction difficult. Therefore, it is necessary to implement artificial intervention to enhance extraction efficiency. Based on the endothermic flash evaporation and phase change pressurization characteristics of liquid CO2, the application of pressure injection liquid CO2 phase change displacement technology for coalbed methane has become increasingly widespread. In previous field trials, it was found that the drilling pressure during the liquid CO2 injection process exhibited pulsating changes, and during this period, the gas extraction effect was significantly enhanced. Therefore, how to fully utilize the strengthening effect of drilling pressure pulsation on gas extraction in engineering practice will be the key to further improving the limited liquid CO2 displacement effect in underground wells. Revealing the mechanism of drilling pressure pulsation formation during liquid CO2 injection and understanding its evolutionary law are the scientific basis for achieving the above objectives.

This paper comprehensively applies theoretical analysis, experimental research, numerical simulation, and field experiments to systematically study the formation mechanism and influencing factors of drilling pressure pulsation in liquid CO2 phase change displacement of coal seam CH4, the design and development of physical similarity simulation experimental system, the evolution law of drilling pressure pulsation and the characteristics of multi field evolution in the hole, the optimization of injection parameters and the verification of pressure pulsation characterization prediction model, and the evaluation of pulsation displacement promotion efficiency. The main research results are as follows:

(1)A physical model for underground drilling pressure injection of liquid CO2 has been established. By analyzing the coupled heat transfer process of solid liquid gas multiphase in the borehole, the principle that the variation of borehole pressure is jointly controlled by the injection fluid pressure, liquid CO2 phase change pressure, and CO2 leakage flow rate has been elucidated; Based on the ideal gas state equation, the mathematical expression for the phase change pressure of liquid CO2 in the pore was derived. Combined with the heat calculation formula, the effective thermal conductivity was used to quantitatively characterize the phase change pressure of liquid CO2. By conducting experiments on the variation of effective thermal conductivity with the surface temperature of coal samples during the process of injecting liquid CO2 into coal samples of equal height and unequal diameter, a quantitative correspondence formula for the effective thermal conductivity with the coal temperature around the pore was obtained. Based on the above quantitative relationship, the mathematical model of the pulsation of drilling pressure under the comprehensive action of three factors is derived.

(2)Based on the similarity principle, a model test method, combined with the theories of fluid dynamics and heat transfer, the similarity criteria were accurately selected and the similarity scale of the prototype and model with the same physical quantity was calculated in combination with the similarity category in this study. The mathematical relationship between the prototype and model injection pressure was deduced. The pressure resistance and thick wall heat transfer efficiency of the model container were tested, and the minimum medium flow velocity required for stable heat transfer in a circular constant temperature medium chamber with an equivalent radius of 37 mm was calculated using limit thinking, which is 3.5 m/s. The experimental system was tested for good operating conditions through indicators such as low-temperature refrigeration stability, CO2 liquid supply continuity, chamber heating continuity, and outlet discharge smoothness.

(3)We conducted a physical similarity simulation experiment of underground drilling pressure injection of liquid CO2, clarified the influence laws of injection pressure, liquid CO2 phase change pressure, and CO2 leakage flow rate on the total pressure pulsation of the container, and conducted correlation analysis on five key parameters that affect drilling pressure pulsation, namely injection pressure, injection flow rate, injection temperature difference, leakage pressure, and leakage flow rate. We obtained the mathematical expression of the real-time value of the total pressure pulsation of the container and transformed it into a representation form with injection pressure and hole temperature as independent variables. This result verified the mathematical model of drilling pressure pulsation change. At the same time, the pulsation amplitude and pulsation period of the total pressure pulsation of the container were given as a function of the injection pressure and injection temperature difference

(4)Based on the evolution characteristics of total pressure pulsation in physical simulation experiments, using the amplitude of pressure pulsation change as the evaluation criterion, starting from the injection temperature difference, the mathematical expression of the optimal injection pressure Pz-波峰 with △Tz as the independent variable when injecting liquid CO2 under the condition of the temperature difference △Tz between liquid CO2 and the container was obtained. By calculating the amplitude and period of total pressure pulsation change in the container under the combination of △Tz and Pz-波峰 injection parameters, and combining the mathematical relationship between the prototype and the model injection pressure, a model for optimizing the injection parameters of liquid CO2 injection in underground drilling and predicting the characterization of pressure pulsation was constructed. The optimal injection pressure and drilling pressure pulsation characteristic values corresponding to a coal seam at 20 ℃ were predicted using a hypothetical case.

(5)A theoretical model of liquid CO2 evaporation phase change was established based on the underground drilling pressure injection of liquid CO2. A UDF program file containing the latent heat of phase change with temperature was written to simulate the injection pressure calculation using the coal seam temperature that is consistent with the assumed case and the pressure injection parameter optimization calculation and pressure pulsation characterization prediction model. The transient solution was performed using Fluent software to explain the temperature field, pressure field, two-phase flow field distribution, and CO2 gas-liquid ratio evolution characteristics in the drilling process of liquid CO2 pressure injection. The fluid dynamics characteristics under the coupling effect of injection pressure and liquid CO2 evaporation phase change in the drilling were analyzed. The numerical simulation results were compared and verified with the model prediction results. The benchmark value error of the pressure pulsation change amplitude of the two was 6.3%, which can be considered to be basically consistent.

(6)In a coal seam with the same temperature as the hypothetical case, engineering validation of the prediction model and in-situ testing of the CH4 pumping efficiency of coal seam displacement by drilling pressure pulsation were carried out under the condition of selecting the injection pressure as the injection working condition using the prediction model. During the injection process, the drilling pressure fluctuated, and the amplitude of the pressure pulsation change had errors of 12.5% and 17.6%, respectively, compared with the model prediction results and numerical simulation results. The errors of the pressure pulsation period, peak value, trough value, and liquid CO2 phase change pressure value in the hole in the in-situ test and model prediction results were 2.9%, 18.6%, 19%, and 12.5%, respectively, which met the engineering accuracy requirements. Therefore, the engineering validation further verified the accuracy of the pressure parameter optimization calculation and pressure pulsation characterization prediction model. Applicability. In addition, the effective influence radius of coal seam CO2, CH4 extraction concentration, mixed amount of drilling and extraction, and pure amount of drilling and extraction CH4 were used to analyze the quantitative pressure injection promotion effect of different injection pressures. It was shown that the pulsating displacement effect of drilling pressure is better, and it can better exert the displacement promotion effect of limited amount canned liquid CO2 underground.

参考文献:

[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1):1-6.

[2] 胡凯. 中国煤层气开采工程技术发展趋势及关键技术需求分析[D]. 中国石油大学(北京), 2020.

[3] 康天合. 煤层注水渗透特性及其分类研究[J]. 岩石力学与工程学报, 1995(03): 260-263+2645+265-268.

[4] 苏现波, 方文东. 煤储层的渗透性及其分级与分类[J]. 焦作工作学院学报, 1998(02):13-18.

[5] 王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322.

[6] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术-应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4): 466-472.

[7] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J].煤炭学报, 2016, 41(11): 2793-2799.

[8] 樊世星, 文虎, 金永飞, 等. 穿层钻孔液态CO2压裂煤层起裂压力模型探究和工程验证[J]. 岩石力学与工程学报, 2021, 40(04): 703-712.

[9] 文虎, 樊世星, 马砺, 等. 低渗透性煤层井下低压液态CO2促抽瓦斯工程实践[J]. 西安科技大学学报, 2018, 38(04): 530-537.

[10] 李好婷, 朱玉颖, 孔德旭, 等. 多孔介质内颗粒流动特性及其对传热影响的模拟研究[J]. 工程热物理学报, 2021, 42(08): 2017-2026.

[11] Xiao Feng, Yin Xiaolong. Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[J]. Computers & Mathematics with Applications, 2016, 72: 328-348.

[12] 李明. 基于方向随机行走方法的多孔介质渗流研究[D]. 扬州: 扬州大学, 2018.

[13] 黄永平. 多孔介质渗流行为的数值模拟研究[J]. 建筑热能通风空调, 2016, 35(4): 38-42.

[14] 韩桔. 基于数值模拟的多孔介质内气体流动传热特性研究[D]. 西安: 西安石油大学, 2020.

[15] 李景明, 牛环宁, 刘书城, 等. 随机多孔介质内流体流动传热传热特性研究[J]. 广州化工, 2021, 49(23): 54-56.

[16] Shashkina O, Wagner C. Modelling the influence of wall roughness on heat transfer in thermal convection[J]. Journal of Fluid Mechanics, 2011, 686: 568-582.

[17] Wei Ping, Chan Takshing, Ni Rui, et al. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[J]. Journal of Fluid Mechanics, 2014, 740: 28-46.

[18] Khan ZH, Qasim M, Haq RU, et al. Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium[J]. Chinese Journal of Physics, 2017, 55: 1284-1293.

[19] 徐静磊, 张赛, 王昌进, 等. 多孔介质粗糙表面分形-蒙特卡罗传热研究[J]. 农业装备与车辆工 程, 2021, 59(10): 27-31.

[20] 陈叔平, 李慧燕, 陈光奇, 等. 毛细多孔介质在液氮中的传热试验研究[J]. 低温技术, 2007, 35(4): 298-303.

[21] 温永刚, 张晓曦, 陈光奇, 等. 多孔材料传冷特性的对比试验[J]. 低温工程, 2008(02): 14-17.

[22] 孙李宁, 陈叔平, 陈光奇, 等. 玄武岩纤维在低温下的传热特性试验研究[J]. 低温工程, 2008(03): 35-37+60.

[23] 温永刚, 陈光奇. 多孔介质层材料在低温下的传热特性实验研究[J]. 真空与低温, 2007(02): 98-101.

[24] Shi Bobo, Zhou Fubao. Impact of Heat and Mass Transfer during the Transport of Nitrogen in coal Porous Media on Coal Mine Fires[J]. The Scientific World Journal, 2014, 2014: 293142.

[25] 王雪江. 采空区注氮防灭火和束管监控系统联合使用研究[J]. 当代化工研究, 2020(24): 95-97.

[26] 段杰. 庞庞塔矿9-301工作面注氮防灭火控制技术研究[J]. 煤炭与化工, 2020, 43(02): 98-101.

[27] 朱红青, 李峰, 张悦, 等. 非间隔式注氮防灭火工艺的设计与惰化效果分析[J]. 煤矿安全, 2013, 44(02): 175-178.

[28] Brune JF, Saki SA. Prevention of gob ignitions and explosions in longwall mining using dynamicseals[J]. International Journal of Mining Science and Technology, 2017, 27: 999-1003.

[29] 马娇, 董子文. 兴安矿段间无煤柱开采对采空区注氮效果的影响[J]. 矿业安全与环保, 2019, 46(03): 11-17+22.

[30] 张磊, 卢硕, 唐俊, 等. 液氮溶浸时间对烟煤渗流特性的影响及传热过程模拟[J].采矿与安全工程学报, 2021, 38(6): 1231-1239.

[31] Qin Lei, Zhai Cheng, Liu Shimin, et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw-A nuclear magnetic resonance investigation[J]. Fuel, 2017, 194: 102-114.

[32] 刘清泉, 褚鹏, 黄文怡, 等. 瓦斯脱附扩散迟滞压力及双重孔隙煤体窜流函数[J]. 煤炭学报, 2022, 47(02): 870-882.

[33] 于志金. 松散煤体内液态CO2相变传热与传质过程研究[D]. 西安科技大学, 2017.

[34] 蒋兰兰. CO2地质封存多孔介质内气液两相渗流特性研究[D]. 大连理工大学, 2014.

[35] 何学秋, 田向辉, 宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术, 2022, 50(1): 212-219.

[36] 桑树勋, 王冉, 周效志, 等. 论煤地质学与碳封存[J]. 煤田地质与勘探, 2021, 49(1): 1-11.

[37] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(04): 1416-1429.

[38] Sabau AS, Tao YX, Liu G, et al. Effective thermal conductivity for anisotropic granular porous media using fractal concepts[J]. Proc. of National Heat Transfer Conference, 1997, 11: 121-128.

[39] Luikov AV. Heat and Mass Transfer. Moscow: Mir Publisher, 1980.

[40] Aduda BO. Effective Thermal Conductivity of Loose Particulate Systems[J]. Journal of Materials Science, 1996, 31: 6441-6448.

[41] 张海林. 提高散体有效导热系数模型准确度的理论与实验研究[D]. 华北电力大学(河北), 2004.

[42] 赵晓琳. 多孔介质有效导热系数的算法研究[D]. 大连理工大学, 2009.

[43] Bozomolov VZ, Chudnovsky AF. Trans. Agrophysical Inst. 1941, 3.

[44] Kaganer MG. Heat Transfer Insulation in the Low-Temperature Enineering. Moscow: Mashinostroenie, 1968.

[45] Nikitin VS. Candidate of Techn. Sci. Dissertation, Minsk, 1969.

[46] Hadley G. Thermal Conductivity of Packed Metal Powders. Int. J. Heat Mass Transfer, 1986, 29(6): 909-920.

[47] Botterill J SM, Salway AG, Teoman Y. The Effective Thermal Conductivity of High Temperature Particulate Beds-II, Model Predictions and the Implication of the ExperimentalValued[J]. Int. J. Heat Mass Transfer, 1989, 32(3): 595-609.

[48] Kamiuto K. Study of Dul’nev’s Model for the Thermal and Radiative Properties of Open-Cellular Porous Materials[J]. JSME Int. J. Series B, 1997, 40(4): 577-582.

[49] 潘宏亮. 多孔介质有效导热系数的计算方法[J]. 航空计算技术, 2000(03): 12-14.

[50] Yang SR, Xu ZM, Zhao XT et al. A Fractal Model for Thermal Conductivity in a Disperse System of Even Particles[J]. Heat Transfer-Asian Research, 2000, 29(7): 535-544.

[51] Liang Xingang, Ji Xu. Thermal Conductance of Randomly Oriented Composites of Thin Layers[J]. Int. J. Heat and Mass Transfer, 2000, 43: 3633-3640.

[52] 陈松林, 汪魁, 赵明阶. 基于分形理论的饱和多孔介质电导率模型建立[J]. 科学技术与工程, 2021, 21(36): 15597-15602.

[53] Wang Yingying, Ma Chao, Liu Yanfeng, et al. A model for the effective thermal conductivity of moist porous building materials based on fractal theory[J]. Int. J. Heat and Mass Transfer, 2018, 125: 387-399.

[54] Chen YP, Shi MH. Determination of effective thermal conductivity for porous media using fractal techniques[J]. Journal of Engineering Thermophysics, 1999, 20(5): 608-612.

[55] Li Dongliang, Du Jianwei, He Song, et al. Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples[J]. Science China Chemistry, 2012, 55(3): 373-379.

[56] 陈永平, 施明恒. 基于分形理论的多孔介质导热系数研究[J]. 工程热物理学报, 1999(05): 608-612.

[57] 施明恒, 樊荟. 多孔介质导热的分形模型[J]. 热科学与技术, 2002(01): 28-31.

[58] Xiao Boqi, Zhang Min, Chen Hanxin, et al. A fractal model for predicting the effective thermal conductivity of roughened porous media with microscale effect[J]. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2021, 29(05): 2150114.

[59] 史玉凤, 刘红, 孙文策. 多孔介质有效导热系数的实验与模拟[J]. 四川大学学报(工程科学版), 2011, 43(03): 198-203.

[60] 鲍玲玲, 靳鹏飞, 王雪, 等. 非饱和多孔介质有效导热系数模型[J]. 科学技术与工程, 2022, 22(19): 8327-8332.

[61] Buckley SE, Leverett MC. Trans. AIME, 146 (1942), 107-116.

[62] БaрeHoлaтт ГИ, ЖеЛТOВ Ю П. ДAH CCCP. 132, 3 (1960), 545-548.

[63] 杨宏民, 张铁岗, 王兆丰, 等. 煤层注氮驱替甲烷促排瓦斯的试验研究[J]. 煤炭学报, 2010, 35(5), 792-796

[64] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换—驱替效应及其转化机制分析[J]. 煤炭学报, 2016, 41 (9): 2246-2250.

[65] 耿晓伟, 阎晶雪. 注气条件对CO2置换驱替CH4影响的实验研究[J]. 中国安全生产科学技术, 2021, 17(11): 79-84.

[66] 姜延航, 白刚, 周西华, 等. 煤层注CO2驱替CH4影响因素试验研究[J]. 中国安全科学学报, 2022, 32(4): 113-121.

[67] 韩光, 付志豪, 白刚, 等. CO2注气压力对CH4驱替特性影响实验研究[J/OL]. 中国安全生产科学技术, 2022(08): 1-6.

[68] 周西华, 姜鹏飞, 白刚, 等. CO2驱替CH4置换效率测试与分析[J]. 中国安全科学学报, 2020, 30(02): 8-13.

[69] 李菁华, 张磊, 薛俊华, 等. 注气驱替中CO2置换煤体CH4行为特征[J]. 煤炭学报, 2021, 46(S1): 385-395.

[70] 梁卫国, 张倍宁, 黎力, 等.注能(以CO2为例)改性驱替开采CH4理论与实验研究[J]. 煤炭学报, 2018, 43(10), 2839-2847.

[71] 梁卫国, 吴迪, 赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学报, 2010, 29(4), 665-673.

[72] 王立国. 注气驱替深部煤层CH4实验及驱替后特征痕迹研究[D]. 徐州: 中国矿业大学, 2013.

[73] 周军平, 鲜学福, 李晓红, 等. 吸附不同气体对煤岩渗透特性的影响[J]. 岩石力学与工程学报, 2010, 29(11), 2256-2262.

[74] Kumar H, Elsworth D, Liu J, et al. Permeability evolution of propped artificial fractures in coal on injection of CO2[J]. Journal of Petroleum Science and Engineering, 2015, 133, 695-704.

[75] 卢义玉, 周军平, 鲜学福, 等. 超临界CO2强化页岩气开采及地质封存一体化研究进展与展望[J].天然气工业, 2021, 41(06): 60-73.

[76] 吴迪, 刘雪莹, 孙可明, 等. 热力作用下煤层注CO2驱替CH4试验研究[J]. 煤炭学报, 2016, 41(1):

162-166.

[77] 吴迪, 刘雪莹, 孙可明, 等. 热力耦合条件下超临界CO2驱替煤层CH4实验[J]. 煤田地质与勘探, 2019, 47(3): 85-90.

[78] 杨宏民, 魏晨慧, 王兆丰, 等. 基于多物理场耦合的井下注气驱替煤层甲烷的数值模[J]. 煤炭学报, 2010, 35(S1): 109-114.

[79] Wang Liguo, Wang Zhaofeng, Xu Shurong, et al. A field investigation of the deformation of protected

coal and its application for CBM extraction in the Qinglong coalmine in China[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1): 367-373.

[80] 孙可明, 梁冰, 潘一山. 流固耦合作用下注气开采煤层气增产规律研究[J]. 科学技术与工程, 2006, 6(7): 802-806,813.

[81] 杨兆中, 袁健峰, 朱静怡, 等. 煤层气注热增产研究进展[J]. 油气藏评价与开发, 2022, 12(4): 617-625.

[82] Wang Gongda, Ren Ting, Wang Kai, et al. Influence of maximum pressure on the path of CO2 desorption isotherm on coal[J]. Energy & Fuels, 2014, (28), 7093-7096.

[83] Wen Hu, Cheng Xiaojiao, Chen Jian, et al. Micro-pilot test for optimized pre-extraction boreholes and enhanced coalbed methane recovery by injection of liquid carbon dioxide in the Sangshuping coal mine[J]. Process Safety and Environmental Protection, 2020, 136: 39-48.

[84] Wei Gaoming, Wen Hu, Deng Jun, et al. Enhanced coalbed permeability and methane recovery via hydraulic slotting combined with liquid CO2 injection[J]. Process Safety and Environmental Protection, 2021, 147: 234-244.

[85] 文虎, 樊世星, 马砺, 等. 低渗透性煤层井下低压液态CO2促抽瓦斯工程实践[J]. 西安科技大学学报, 2018, 38(04): 530-537.

[86] 郭勇, 柯波, 吴著明, 等. 液态CO2爆破系统相变过程的热力学特性研究[J]. 爆破, 2018, 35(04): 108-115.

[87] 周科平, 柯波, 李杰林, 等. 液态CO2爆破系统压力动态响应及爆炸能量分析[J]. 爆破, 2017, 34(03): 7-13.

[88] 白鑫, 张东明, 王艳, 等. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报, 2020, 49(04): 661-670.

[89] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018, 43(7): 1938-1950.

[90] 王瑞和, 倪红坚. 二氧化碳连续管井筒流动传热规律研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 65-70.

[91] 陆友莲, 王树众, 沈林华, 等. 纯液态CO2压裂非稳态过程数值模拟[J]. 天然气工业, 2008, 28(11): 93-95.

[92] Lyu Xinrun, Zhang Shicheng, Ma Xinfang, et al. Numerical study of non-isothermal flow and wellbore heat transfer characteristics in CO2 fracturing[J]. Energy, 2018, 156: 555-568.

[93] Lyu Xinrun, Zhang Shicheng, Ma Xinfang, et al. Numerical investigation of wellbore temperature and pressure fields in CO2 fracturing[J]. Applied Thermal Engineering, 2018, 132: 760-768.

[94] 吴晓东, 王庆, 何岩峰. 考虑相态变化的注CO2井井筒温度压力场耦合计算模型[J]. 中国石油大学学报(自然科学版), 2009, 33(1): 73-77.

[95] 郭建春, 曾冀. 超临界二氧化碳压裂井筒非稳态温度-压力耦合模型[J]. 石油学报, 2015, 36(2): 203-209.

[96] 郭建春, 曾冀, 张然, 等. 井筒注二氧化碳双重非稳态耦合模型[J]. 石油学报, 2015, 36(8): 976-982.

[97] Witlox H W M, Stene J, Harper M, et al. Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios[J]. Energy Procedia, 2011, 4(1):2253-2260.

[98] Witlox H W M, Harper M, Oke A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 795-802.

[99] Wareing C J, Fairweather M, Falle S A E G, et al. Validation of a model of gas and dense phase CO2, jet releases for carbon capture and storage application[J]. International Journal of Greenhouse Gas Control,

2014, 20(1):254-271.

[100] Brown S, Martynov S, Mahgerefteh H, et al. A homogeneous relaxation flow model for the full bore

rupture of dense phase CO2, pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17(9):349–356.

[101] Webber D M. Generalising two-phase homogeneous equilibrium pipeline and jet models to the case of

carbon dioxide[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4):356-360.

[102] Reeves SR. The Coal-Seq Project: Key Results from Field, Laboratory, and Modeling Studies[M]. 2005.

[103] Bergen FV, Pagnier H, Krzystolik P. Field experiment of enhanced coalbed methane-CO2 in the upper

Silesian basin of Poland[J]. Environmental Geosciences, 2006, 13(3): 201-224.

[104] Shi Jiquan, Durucan S, Fujioka M. A reservoir simulation study of CO2 injection and N2 flooding at

the Ishikari coalfield CO2 storage pilot project, Japan[J]. International Journal of Greenhouse Gas

Control, 2008, 2(1):47-57.

[105] Masaji Fujioka , Shinji Yamaguchi , Masao Nako. CO2-ECBM field tests in the Ishikari Coal Basin of

Japan[J]. International Journal of Coal Geology, 2010, 82(3): 287-298.

[106] Prabu V, Mallick N. Coalbed methane with CO2 sequestration: An emerging clean coal technology in

India[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 229-244.

[107] 张美红, 吴世跃, 李川田. 煤系地层注CO2开采煤层气质交换的机理[J]. 煤炭学报, 2013,

38(07): 1196-1200.

[108] 李志强, 王兆丰. 井下注气强化煤层气抽采效果的工程试验与数值模拟[J]. 重庆大学学报,

2011, 34(04): 72-77+82.

[109] 马砺, 魏高明, 王世斌, 等. 低渗透性煤层注液态CO2置换驱替CH4试验[J]. 重庆大学学报,

2018, 41(06): 76-83.

[110] 杨宏民. 井下注气驱替煤层甲烷机理及规律研究[D]. 焦作: 河南理工大学, 2010.

[111] 文虎, 樊世星, 马砺, 等. 低渗透性煤层井下低压液态CO2促抽瓦斯工程实践[J]. 西安科技大

学学报, 2018, 38(04): 530-537.

[112] 李珍宝. 液态CO2低温致裂及相变驱替促抽煤层CH4机制研究[D]. 西安科技大学, 2019.

[113] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.

[114] 佚名. 二氧化碳(CO2)相关物理性质 [EB/OL]. https://www.renrendoc.com/paper/170274697.html.

[115] 张天军, 纪翔, 张磊, 等. 瓦斯抽采钻孔孔周裂隙演化及等效裂纹宽度试验研究[J]. 岩石力学

与工程学报, 2019, 239:140-146.

[116] 高彦芳, 陈勉, 林伯韬, 等. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019,

36(1): 32-43.

[117] 林瑞泰. 多孔介质传热传质引论[M]. 北京: 科学出版社,1995.

[118] S Whitaker. Diffusion and dispersion in porous media[J]. AICHE Journal, 1967, 13:420-427.

[119] S Whitaker. Advances in theory of fluid motion in porous media[J]. Industrial & Engineering Chemistry

Research, 1969, 61: 14-28.

[120] S Whitaker. The transport equations for multi-phase system[J]. Chemical Engineering Science, 1973,

28: 139-147.

[121] S Whitaker. Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying[M].

In: Advances in heat transfer (Edited by J P Hartnett and J F Irvine Jr), New York: Academic Press,

1977.

[122] J C Slattery. Flow of viscoelastic fluids through porous media[J]. AICHE Journal, 1967, 13: 1066-1071.

[123] 黄晓明. 多孔介质相变传热与流动及其若干应用研究[D]. 华中科技大学, 2004.

[124] Jacob Bear. Dynamics of fluids in porous media[M]. NEW YORK: DOVER PUBLICATIONS, INC,

1972: 19-21.

[125] Peter Bastian. Numerical computation of multiphase flows in porous media[M]. Habilitationsschrift,

1999.

[126] J Bear. Dynamics of fluids in porous media[M]. American Elsevier Publishing Company, Inc., 1972.

[127] 陶文铨. 传热学(第五版)[M]. 北京: 高等教育出版社, 2019.

[128] Campo A. Rapid determination of spatio-temporal temperatures and heat transfer in simple bodies

cooled by convection: usage of calculators in lieu of Heisler-Grober charts[J]. International Communications in Heat and Mass Transfer, 1997, 24(4): 553-564.

[129] 李椿, 章立源, 钱尚武. 热学(第三版)[M]. 北京: 高等教育出版社, 2015.

[130] Farquhar S M, Pearce J K, Dawson G K W, et al. A fresh approach to investigating CO2, storage:

Experimental CO2-water-rock interactions in a low-salinity reservoir system. Chemical Geology, 2015,

399(3): 98-122.

[131] H Guo, Y Yu, K Wang, et al. Kinetic characteristics of desorption and diffusion in raw coal and tectonic

coal and their influence on coal and gas outburst. Fuel 2023, 343: 127883.

[132] H Guo, H Tang, Y Wu, et al. Gas seepage in underground coal seams: Application of the equivalent

scale of coal matrix-fracture structures in coal permeability measurements. Fuel 2020, 288: 119641.

[133] H Guo, K Wang, Y Wu, et al. Evaluation of the weakening behavior of gas on the coal strength and its

quantitative influence on the coal deformation. International Journal of Mining Science and Technology 2021, 31: 451-462.

[134] H Guo, L Yuan, Y Cheng, et al. Experimental investigation on coal pore and fracture characteristics

based on fractal theory. Powder Technology 2019, 346: 341-349.

[135] 李启章. 混流式水轮机 水力稳定性研究[M]. 北京: 中国水利水电出版社, 2014.

[136] 裴吉, 袁寿其. 离心泵费定常流动特性及流固耦合机理[M]. 北京:机械工业出版社, 2014.

[137] 汤其建, 张国枢, 陈清华. 松散煤体导热系数影响因素分析[J]. 江西煤炭科技, 2006, (4): 24-26.

[138] 孙越, 李增华, 高思源, 等. 瞬态径向热流法测定松散煤体变导热系数[J]. 中国安全生产科学

技术, 2012, 8(1): 42-46.

[139] 岳宁芳. 松散煤体导热系数的分析[J]. 矿业安全与环保, 2006, 33(3): 26-30.

[140] 陈清华, 张国枢, 梁华珍, 等. 松散煤体导热系数测定系统设计[J]. 煤炭科学技术, 2007, 35(4):

74-76.

[141] 唐明云, 张国枢, 张朝举, 等. 平行热线法测定松散煤体导热系数试验[J]. 矿业安全与环保,

2006, 33(5): 13-15.

[142] 何刚, 张国枢, 陈清华. 热线法测松散煤体变导热系数[J]. 煤矿安全, 2007, (6): 19-21.

[143] 赵为平, 沈晶. 堆积煤等效导热系数的实验测定[J]. 黑龙江电力技术, 1997, 19(2): 72-74.

[144] 白晓红. 煤热性质和电性质的测量[J]. 煤气与热力, 1988, (3): 4-11.

[145] 李建伟, 葛岭梅, 徐精彩, 等. 松散煤体导热系数测定实验[J]. 辽宁工程技术大学学报, 2004,

23(1): 5-8.

[146] 文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, 28(4):

370-374.

[147] 西安科技大学, 西安天河矿业科技有限公司. 煤体导热系数测定装置及方法:

CN201710803678.7[P]. 2017-12-01.

[148] 西安科技大学,西安天河矿业科技有限责任公司. 一种煤体导热系数测量装置:

CN201721153669.X[P]. 2018-03-27.

[149] 李青蔚. 煤贫氧氧化热动力过程基础研究[D]. 陕西:西安科技大学,2018.

[150] 彭担任. 稳态双平板法测定煤和岩石的导热系数[J]. 江苏煤炭, 1993, (3): 22-26.

[151] 沈选举. 管式干燥气固两相流的相似性原理及耦合数值模拟[D]. 昆明: 昆明理工大学, 2005.

[152] 潘小勇. 流体力学与传热学[M]. 南昌: 江西高校出版社, 2019.

[153] 徐宇, 李孜军, 王君健, 等. 矿井热害治理协同地热开采相似模拟实验研究[J]. 中南大学学报

(自然科学版), 2023, 54(06): 2162-2173.

[154] 丁国良, 黄冬平. 二氧化碳制冷技术[M]. 北京: 化学工业出版社, 2007.

[155] 丛钰洲, 翟成, 丁熊, 等.煤层钻孔内注入液氮过程中的传热传质规律及煤损伤分析[J]. 煤炭学

报, 2023, 48(08): 3128-3137.

[156] 孔珑. 工程流体力学(第四版)[M]. 北京: 中国电力出版社, 2014.

[157] 杨雪林, 文光才, 孙海涛, 等. 煤与瓦斯突出冲击动力效应及致灾特征模拟实验系统研制与应

用[J]. 煤炭学报, 2023, 48(10): 3731-3749.

[158] 蒋新生. 工程流体力学[M]. 重庆: 重庆大学出版社, 2017.

[159] 李贤忠. 高压脉动水力压裂增透机理与技术[D]. 中国矿业大学, 2014.

[160] 吴迪, 王翰阳, 苗丰, 等. 超临界CO2作用下CO2渗流特性与煤层增透效果研究[J]. 煤炭科学

技术, 2020, 48(10): 90-96.

[161] 魏高明. 液态CO2致裂增透及驱替煤层瓦斯作用机制研究[D]. 西安科技大学, 2021.

[162] 韩宏茵. 深冷翅片管气化器管内相变换热研究[D]. 兰州理工大学, 2012.

[163] 陈叔平, 韩宏茵, 谢福寿, 等. 翅片管气化器管内相变传热流动数值模拟[J] 低温与超导, 2012,

40(02): 52-56.

[164] 叶志恒. 液化气体储罐爆沸过程的数值模拟研究[D]. 大连理工大学, 2015.

[165] 雷云. 低渗透高瓦斯煤层二氧化碳相变致裂增透理论及实验研究[D]. 西南石油大学, 2020.

[166] Menter F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1606.

[167] 胡德民, 王春明. CFD工程中湍流模型的选择与应用[J]. 航空学报, 2004, 25(5).

[168] 鲁钟琪. 两相流与沸腾传热[M]. 北京: 清华大学出版社, 2002.

[169] Said Talebi, Farshad Abbasi, Hadi Davilu. A 2D numerical simulation of sub-cooled flow boiling at

low-pressure and low-flow rates[J]. Nuclear Engineering and Design, 2009, 24(4): 553-564.

[170] 林宗虎等. 气液两相流和沸腾传热[M]. 西安: 西安交通大学出版社, 2003.

[171] 李萍, 马邮国, 成龙, 等. 黄陵二号煤矿2号煤层瓦斯赋存规律研究[J]. 中国煤层气,

2023, 20(01): 28-31.

[172] 程小蛟. 液态CO2相变渗流驱替CH4机制及效果评价研究[D]. 西安科技大学, 2022.

[173] 樊世星. 液态CO2压裂煤岩增透及裂缝形成机制研究[D]. 西安科技大学, 2019.

[174] 孙波. 煤层巷道松动圈测定技术及应用[J]. 煤矿安全, 2010, 41(08): 45-47.

[175] 米万升. 基于红外探测技术的巷道火源预测预报研究[D]. 河北工程大学, 2018.

[176] 包若羽. 松软煤层抽采钻孔密封段失稳机理及新型加固密封技术研究[D]. 西安科技大学, 2019.

[177] 徐奕铭, 张永涛, 窦成义, 等. 顺层钻孔液态CO2驱替煤层瓦斯合理封孔长度优化研究[J]. 煤

炭技术, 2023, 42(07): 98-102.

[178] 刘名阳. CO2驱替置换煤层CH4压力效应作用机制及关键技术参数研究[D]. 西安科技大学,

2023.

[179] W Mi, H Wen, S Fan, et al. Correlation analysis of injection parameters for low-medium pressure injection of liquid CO2 for CH4 displacement in coal seams. Energy 2023, 278: 127760.

[180] W Mi, H Wen, S Fan, et al. Pilot test of high-pressure water jet slotting with liquid CO2 injection to displace CH4 and improve coal seam permeability. Fuel 2023, 351: 128822s.

中图分类号:

 TD712    

开放日期:

 2026-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式