- 无标题文档
查看论文信息

论文中文题名:

 光照调节视角下压力易感性对煤矿调度员认知表现的 fNIRS 机制研究    

姓名:

 杨海兰    

学号:

 22202098051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120202    

学科名称:

 管理学 - 工商管理 - 企业管理(含:财务管理、市场营销、人力资源管理)    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工商管理    

研究方向:

 安全与应急管理    

第一导师姓名:

 李红霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-20    

论文答辩日期:

 2025-06-04    

论文外文题名:

 The fNIRS Mechanism Study of the Impact of Stress Sensitivity on the Cognitive Performance of Coal Mine Dispatchers under the Perspective of Light Regulation    

论文中文关键词:

 压力易感性 ; 光照条件 ; 认知表现 ; fNIRS ; 神经调节    

论文外文关键词:

 Stress Susceptibility ; Lighting Conditions ; Cognitive Performance ; fNIRS ; Neural Regulation    

论文中文摘要:

煤矿调度员负责生产计划、资源调配和应急处理,其认知能力直接影响生产安全与效率。长期处于高压力环境下,调度员需高度专注,快速决策并处理多任务。研究表明,个体对压力的感知差异可能导致认知表现变化,同时光照条件作为外部因素,可能通过调节神经活动和情绪状态影响认知功能。本研究旨在探讨压力易感性与光照条件对调度员认知表现的影响机制,并分析光照调节效应,构建认知表现预警模型,为优化工作环境和提高安全生产水平提供依据。主要工作与结论如下:

本研究结合行为实验与功能性近红外光谱(fNIRS)技术,通过OSPAN任务评估煤矿调度员在不同光照条件下的反应时间、任务准确率与工作记忆容量,并分析前额叶皮层(PFC)神经活动变化。依据PSS-14量表区分高、低压力易感性个体,测试其在高、低光照条件下的认知表现,并以S-AI量表确认心理压力状态。结果显示:(1)高光照显著提升认知表现,包括更快的反应时间、更高的准确率和更大的记忆容量;(2)高压力易感者在高认知负荷任务中表现较差,表明其在压力下认知能力更易受损;(3)光照可缓解压力对认知的负面影响,fNIRS数据表明高光照下PFC血氧浓度显著升高,说明光照可通过缓解压力改善大脑活动与认知能力;(4)认知任务激活左右PFC区域,且激活强度较高。此外,本研究构建了基于随机森林的煤矿调度员认知表现预警模型,模型准确率为88.46%,验证了其在认知表现预测中的有效性和可靠性,该模型结合压力易感性和光照条件等关键因素,可为煤矿企业提供实时认知表现监测和预警的技术支持。

综上所述,光照条件与压力易感性对煤矿调度员的认知表现产生了显著影响,并通过构建认知表现预警模型,进一步验证了其在实际应用中的有效性。本文的研究为煤矿调度员工作环境优化、压力管理及认知表现监控提供了科学依据,有助于提高工作效率与安全性。研究成果为煤矿行业制定有效的管理策略和防护措施、保障员工健康与矿区安全、促进行业可持续发展提供了重要的理论和实践支持。

论文外文摘要:

Coal mine dispatchers are responsible for production planning, resource allocation, and emergency management, and their cognitive abilities directly impact production safety and efficiency. Working in a high-pressure environment for extended periods, dispatchers must maintain high levels of focus, make quick decisions, and manage multiple tasks simultaneously. Research has shown that individual differences in stress perception can lead to variations in cognitive performance. Additionally, lighting conditions, as an external factor, may influence cognitive function by modulating neural activity and emotional states. This study aims to explore the mechanisms through which stress susceptibility and lighting conditions affect dispatchers' cognitive performance and to analyze the moderating effect of lighting. It also aims to construct a cognitive load warning model, providing a basis for optimizing the work environment and improving safety production levels. The main work and conclusions are as follows:

This study combines behavioral experiments and functional near-infrared spectroscopy (fNIRS) technology. The OSPAN task was used to assess the reaction time, task accuracy, and working memory capacity of coal mine dispatchers under different lighting conditions, and to analyze changes in prefrontal cortex (PFC) neural activity. Based on the PSS-14 scale, individuals were classified into high and low stress susceptibility groups, and their cognitive performance was tested under high and low lighting conditions. The S-AI scale was used to confirm psychological stress levels. The results showed: (1) high lighting significantly enhanced cognitive performance, including faster reaction times, higher accuracy, and greater memory capacity; (2) high stress-sensitive individuals performed worse in high cognitive load tasks, indicating that their cognitive abilities are more susceptible to stress; (3) lighting can alleviate the negative effects of stress on cognition, as fNIRS data showed a significant increase in PFC oxygenated hemoglobin concentration under high lighting, suggesting that lighting can improve brain activity and cognitive ability by alleviating stress; (4) cognitive tasks activated both the left and right PFC regions, with higher activation intensity. Additionally, a random forest-based cognitive load warning model was constructed, with an accuracy of 88.46% on the test set, validating its effectiveness and reliability in predicting cognitive load. This model, incorporating key factors such as stress susceptibility and lighting conditions, provides real-time cognitive load monitoring and warning technical support for coal mine enterprises.

In conclusion, lighting conditions and stress susceptibility have a significant impact on coal mine dispatchers' cognitive performance, and the cognitive load warning model further validates its practical applicability. The findings of this study provide a scientific basis for optimizing the work environment, managing stress, and monitoring cognitive load in coal mine dispatchers, contributing to improved work efficiency and safety. The research results offer important theoretical and practical support for the coal mining industry in developing effective management strategies and protective measures, safeguarding employee health and mine safety, and promoting sustainable industry development.

参考文献:

[1] 孙林辉, 贾元瑞, 王明扬, 等. 工业系统监控作业中的人因失误研究综述[J]. 包装工程, 2022, 43(04): 27-35+14.

[2] 杨植源, 牛莉霞;杨云显. 动态照明对N煤矿调度监控作业人员任务绩效的影响[D]. 辽宁工程技术大学, 2023.

[3] 马申, 梁平, 胡松涛, 等. 基于疲劳度、工作效率及节能的光环境研究[J]. 济南大学学报(自然科学版), 2021, 35(03): 285–289.

[4] 叶鸣, 罗明. 动态光对人类警觉性和任务表现的影响[D]. 浙江大学, 2018.

[5] Dongen H, Dinges D. Circadian rhythms in fatigue, alertness, and performance[J]. Principles and practice of sleep medicine, 2000, 3: 391–399.

[6] Dosher B A, Lu Z-L. Mechanisms of perceptual attention in precuing of location[J]. Vision research, 2000, 40(10–12): 1269–1292.

[7] Feder A, Nestler E J, Charney D S. Psychobiology and molecular genetics of resilience[J]. Nature Reviews Neuroscience, 2009, 10(6): 446–457.

[8] Folstein J R, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review[J]. Psychophysiology, 2008, 45(1): 152–170.

[9] Boyce P, Beckstead J, Eklund N, et al. Lighting the graveyard shift: The influence of a daylight-simulating skylight on the task performance and mood of night-shift workerst[J]. International journal of lighting research and Technology, 1997, 29(3): 105–134.

[10] Boyce P R. Human factors in lighting[M]. Crc press, 2003.

[11] Berson D M, Dunn F A, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock[J]. Science, 2002, 295(5557): 1070–1073.

[12] Figueiro M G, Sahin L, Wood B, et al. Light at night and measures of alertness and performance: implications for shift workers[J]. Biological research for Nursing, 2016, 18(1): 90–100.

[13] Cajochen C. Alerting effects of light[J]. Sleep medicine reviews, 2007, 11(6): 453–464.

[14] Vandewalle G, Maquet P, Dijk D-J. Light as a modulator of cognitive brain function[J]. Trends in cognitive sciences, 2009, 13(10): 429–438.

[15] Vandewalle G, Balteau E, Phillips C, et al. Daytime light exposure dynamically enhances brain responses[J]. Current Biology, 2006, 16(16): 1616–1621.

[16] Perrin F, Peigneux P, Fuchs S, et al. Nonvisual responses to light exposure in the human brain during the circadian night[J]. Current Biology, 2004, 14(20): 1842–1846.

[17] Kopp B T, Hayes Jr D, Ghera P. Pilot trial of light therapy for depression in hospitalized patients with cystic fibrosis[J]. Journal of affective disorders, 2016, 189: 164–168.

[18] Ruger M, Gordijn M C, Beersma D G, et al. Time-of-day-dependent effects of bright light exposure on human psychophysiology: comparison of daytime and nighttime exposure[J]. American Journal of Physiology-regulatory, integrative and comparative Physiology, 2006, 290(5): R1413–R1420.

[19] Leichtfried V, Mair-Raggautz M, Schaeffer V. Intense illumination in the morning hours improved mood and alertness but not mental performance[J]. Applied ergonomics, 2015, 46: 54–59.

[20] Fisher P M, Madsen M K, Mc Mahon B. Three-week bright-light intervention has dose-related effects on threat-related corticolimbic reactivity and functional coupling[J]. Biological Psychiatry, 2014, 76(4): 332–339.

[21] 李芸, 汝涛涛, 李丝雨, 等. 环境光照对情绪的影响及其作用机制[J]. 心理科学进展, 2022, 30(02): 389–405.

[22] Chellappa S L, Ly J Q, Meyer C, et al. Photic memory for executive brain responses[J]. Proceedings of the National Academy of Sciences, 2014, 111(16): 6087–6091.

[23] 喻柏林焦书兰. 照度变化对视觉辨认的影响[J]. 心理学报, 1979(03): 319–325.

[24] 吴文苗, 杨亚龙. 室内照度和色温对工作效率的影响研究[D]. 安徽建筑大学.

[25] 王燕尼, 杨春宇, 段然. 旨在缓解工作人员疲劳的地铁车站健康照明研究——以重庆地铁车站为例[J]. 照明工程学报, 2019, 30(06): 47–52.

[26] 赵晓杰, 侯丹丹, 徐蔚, 等. 办公室LED光源的频闪效应对人体健康的影响[J]. 照明工程学报, 2019, 30(06): 25–31.

[27] Askaripoor T, Motamedzade M, Golmohammadi R, et al. The parallel effect of correlated color temperature and illumination level on alertness and cognitive performance: a multi-measure study.[J]. Journal of Health & Safety at Work, 2021, 11(4).

[28] 汝涛涛, 李芸, 钱柳, 等. 环境光照的认知功效及其调节因素与作用机理[J]. 心理科学进展, 2019, 27(10): 1687–1702.

[29] Shishegar N, Boubekri M, Stine-Morrow E A, et al. Tuning environmental lighting improves objective and subjective sleep quality in older adults[J]. Building and Environment, 2021, 204: 108096.

[30] 李文竹, 王宁华, L M. 绿光照射治疗纤维肌痛[J]. 中国康复, 2022, 37(01): 11.

[31] 石路. 不同环境温度下照明光源对人体体温调节的影响[J]. 上海交通大学学报, 2013, 47(10): 1616–1620.

[32] 余霞. 光对儿童心理的影响及其在照明设计中的应用研究[J]. 光源与照明, 2020(11): 41–43.

[33] Kompier M E, Smolders K C, Van Marken Lichtenbelt W, et al. Effects of light transitions on measures of alertness, arousal and comfort[J]. Physiology & Behavior, 2020, 223: 112999.

[34] 杨春宇, 胡皓, 向奕妍, 等. LED照明环境下照明参数对人眼视疲劳的影响[J]. 土木建筑与环境工程, 2018, 40(04): 88–93.

[35] 朱莹莹, 杨敏齐, 姚颖, 等. 室内照度对认知加工的影响:主观情绪和警觉性的中介作用[J]. 心理科学, 2017, 40(06): 1328–1334.

[36] Smolders K C, De Kort Y A. Bright light and mental fatigue: Effects on alertness, vitality, performance and physiological arousal[J]. Journal of environmental psychology, 2014, 39: 77–91.

[37] Morita T, Tokura H. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans[J]. Applied Human Science, 1996, 15(5): 243–246.

[38] Slama H, Deliens G, Schmitz R, et al. Afternoon nap and bright light exposure improve cognitive flexibility post lunch (raw data)[J]. 2015. .

[39] Ingram R E. Origins of cognitive vulnerability to depression[J]. Cognitive Therapy and Research, 2003, 27: 77–88.

[40] Lazarus R S, Folkman S. Transactional theory and research on emotions and coping[J]. European Journal of personality, 1987, 1(3): 141–169.

[41] 刘艳, 陈建文. 大学生神经质人格的易感性研究[D]. 华中科技大学, 2021.

[42] Belsky J. Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment[J]. Child development, 1997, 68(4): 598–600.

[43] 陈维, 孙晓;郑中华. 基于多通道生理信号的心理压力检测[D]. 合肥工业大学.

[44] Hebb D O. Drives and the CNS (conceptual nervous system).[J]. Psychological review, 1955, 62(4): 243.

[45] McEwen B S, Bowles N P, Gray J D, et al. Mechanisms of stress in the brain[J]. Nature Neuroscience, 2015, 18(10): 1353–1363.

[46] 罗跃嘉, 林婉君, 吴健辉, 等. 应激的认知神经科学研究[J]. 生理科学进展, 2013, 44(05): 345–353.

[47] Hermans E J, Henckens M J, Joëls M, et al. Dynamic adaptation of large-scale brain networks in response to acute stressors[J]. Trends in Neurosciences, 2014, 37(6): 304–314.

[48] 段海军, 王雪微, 王博韬, 等. 急性应激:诱发范式、测量指标及效果分析[J]. 心理科学进展, 2017, 25(10): 1780–1790.

[49] Kirschbaum C, Pirke K-M, Hellhammer D H. The ‘Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory setting[J]. Neuropsychobiology, 1993, 28(1–2): 76–81.

[50] Zenonos A, Khan A, Kalogridis G, et al. HealthyOffice: Mood recognition at work using smartphones and wearable sensors[C]. 2016 IEEE international conference on pervasive computing and communication workshops (PerCom Workshops). IEEE, 2016: 1–6.

[51] Hou X, Liu Y, Sourina O, et al. EEG based stress monitoring[C]//2015 IEEE international conference on systems, man, and Cybernetics. IEEE, 2015: 3110–3115.

[52] Smeets T, Cornelisse S, Quaedflieg C W, et al. Introducing the Maastricht Acute Stress Test (MAST): a quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses[J]. Psychoneuroendocrinology, 2012, 37(12): 1998–2008.

[53] McDuff D, Gontarek S, Picard R. Remote measurement of cognitive stress via heart rate variability[C]. 2014 36th annual international conference of the IEEE engineering in medicine and biology society. IEEE, 2014: 2957–2960.

[54] Dedovic K, Renwick R, Mahani N K, et al. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain[J]. Journal of Psychiatry and Neuroscience, 2005, 30(5): 319–325.

[55] Dickerson S S, Kemeny M E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research.[J]. Psychological bulletin, 2004, 130(3): 355.

[56] Foley P, Kirschbaum C. Human hypothalamus–pituitary–adrenal axis responses to acute psychosocial stress in laboratory settings[J]. Neuroscience & Biobehavioral Reviews, 2010, 35(1): 91–96.

[57] Subhani A R, Mumtaz W, Saad M N B M, et al. Machine learning framework for the detection of mental stress at multiple levels[J]. IEEE Access, 2017, 5: 13545–13556.

[58] Secerbegovic A, Ibric S, Nisic J, et al. Mental workload vs. stress differentiation using single-channel EEG[C].CMBEBIH 2017:Proceedings of the International Conference on Medical and Biological Engineering 2017. Springer, 2017: 511–515.

[59] Islam A, Sarkar A K, Ghosh T. EEG signal classification for mental stress during arithmetic task using wavelet transformation and statistical features[C]//2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). IEEE, 2021: 1–6.

[60] Hanson J L, Nacewicz B M, Sutterer M J, et al. Behavioral problems after early life stress: contributions of the hippocampus and amygdala[J]. Biological Psychiatry, 2015, 77(4): 314–323.

[61] 刘蕾, 史梦薇. 环境敏感性与大学生感知压力的关系研究[D]. 贵州师范大学.

[62] 刘珊珊, 陈建文. 大学生压力易感性人格的内隐词汇观研究[D]. 华中科技大学.

[63] 张伟楠, 陈建文. 中学生学业压力易感性结构及效应机制研究[D]. 华中科技大学.

[64] Chen C-H, Huang M-C, Chiu Y-H, et al. Stress susceptibility moderates the relationship between eveningness preference and poor sleep quality in non-acute mood disorder patients and healthy controls[J]. Nature and Science of Sleep, 2022: 711–723.

[65] 翁紫心, 雷旭. 压力易感性对睡眠质量主观低估的影响:基于压力暴露任务[D]//西南大学.

[66] 袁娅婷, 陈建文. 中学生学业压力易感性的结构及其测量[D]. 重庆师范大学.

[67] Gagnon S A, Wagner A D. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences[J]. Annals of the New York Academy of Sciences, 2016, 1369(1): 55–75.

[68] Wiemers U S, Sauvage M M, Schoofs D, et al. What we remember from a stressful episode[J]. Psychoneuroendocrinology, 2013, 38(10): 2268–2277.

[69] Mather M, Sutherland M R. Arousal-biased competition in perception and memory[J]. Perspectives on psychological science, 2011, 6(2): 114–133.

[70] Schoofs D, Pabst S, Brand M, et al. Working memory is differentially affected by stress in men and women[J]. Behavioural brain Research, 2013, 241: 144–153.

[71] Van Dongen H P, Dinges D F. Circadian rhythms in fatigue, alertness, and performance[J]. Principles and practice of sleep medicine, 2000, 20: 391–399.

[72] Baddeley A. Working memory[J]. Science, 1992, 255(5044): 556–559.

[73] Rüger M, Gordijn M C, De Vries B, et al. Effects of diurnal and nocturnal bright light exposure on human performance and wake EEG[J]. Lighting up the clock: Effects of bright light on physiological and psychological states in Humans, 2005: 61–85.

[74] Bürki-Cohen J, Miller J L, Eimas P D. Perceiving non-native speech[J]. Language and Speech, 2001, 44(2): 149–169.

[75] Turner M L, Engle R W. Is working memory capacity task dependent?[J]. Journal of memory and language, 1989, 28(2): 127–154.

[76] Conway A R, Kane M J, Bunting M F, et al. Working memory span tasks: A methodological review and user’s guide[J]. Psychonomic bulletin & Review, 2005, 12: 769–786.

[77] Chen T, Zhao C, Pan X, et al. Decoding different working memory states during an operation span task from prefrontal fNIRS signals[J]. Biomedical Optics Express, 2021, 12(6): 3495–3511.

[78] Marko M. Development of a protocol for simultaneous assessment of cognitive functioning under psychosocial stress[J]. The Journal of Psychology, 2016, 150(7): 916–929.

[79] 王涛, 刘斌;宋武. 工作照明环境对人体警觉度的影响及调节作用研究[D]. 华侨大学, 2021.

[80] Shadpour S, Shafqat A, Toy S, et al. Developing cognitive workload and performance evaluation models using functional brain network analysis[J]. Npj Aging, 2023, 9(1): 22.

[81] He B, Yang L, Wilke C, et al. Electrophysiological imaging of brain activity and connectivity—challenges and opportunities[J]. IEEE transactions on biomedical Engineering, 2011, 58(7): 1918–1931.

[82] Mihajlović V, Patki S, Grundlehner B. The impact of head movements on EEG and contact impedance: An adaptive filtering solution for motion artifact reduction[C]. 2014 36th annual international conference of the IEEE engineering in medicine and biology society. IEEE, 2014: 5064–5067.

[83] Geissler C, Gauselmann P, Jilek C, et al. A functional near-infrared spectroscopy study on the prefrontal correlates of cognitive offloading via a personal knowledge assistant[J]. Scientific Reports, 2023, 13(1): 13938.

[84] 张如倩, 刘洁琼, 李先春. 社会互动视角下人际公平形成的脑机制[J]. 心理学报, 2019, 51(09): 1007–1017.

[85] Mihara M, Miyai I, Hattori N, et al. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation[J]. PloS One, 2012, 7(3): e32234.

[86] Scholkmann F, Kleiser S, Metz A, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85 (Part 1), 6–27[Z](2014).

[87] Yang D, Huang R, Yoo S, et al. Detection of mild cognitive impairment using convolutional neural network: temporalfeature maps of functional near-infrared spectroscopy. Front Aging Neurosci. 2020; 12: 141[Z](2020).

[88] Nakamura S, Yomota S, Ito H, et al. A novel cognitive function scale using functional near-infrared spectroscopy for evaluating cognitive dysfunction[J]. Journal of Alzheimer’s Disease, 2021, 81(4): 1579–1588.

[89] Borragán G, Gilson M, Di Ricci E. Transcranial direct current stimulation does not counteract cognitive fatigue, but induces sleepiness and an inter-hemispheric shift in brain oxygenation[J]. Frontiers in Psychology, 2018, 9: 348812.

[90] Xiong G, She Z, Zhao J, et al. Transcranial direct current stimulation over the right dorsolateral prefrontal cortex has distinct effects on choices involving risk and ambiguity[J]. Behavioural Brain Research, 2021, 400: 113044.

[91] 潘津津, 焦学军, 焦典, 等. 利用功能性近红外光谱法研究大脑皮层血氧情况随任务特征变化规律[J]. 光学学报, 2015, 35(08): 236–242.

[92] Hoshi Y. Hemodynamic signals in fNIRS[J]. Progress in brain research, 2016, 225: 153–179.

[93] 潘津津; 焦学军; 姜劲; 徐凤刚; 杨涵钧. 利用功能性近红外光谱成像方法评估脑力负荷[J]. 光学学报, 2014(11 vo 34): 344–349.

[94] Herff C, Heger D, Fortmann O, et al. Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS[J]. Frontiers in human Neuroscience, 2014, 7: 935.

[95] Cui X, Bray S, Bryant D M. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks[J]. Neuroimage, 2011, 54(4): 2808–2821.

[96] 曾嘉怡. 乒乓球运动对9-11岁儿童持续注意力和工作记忆的影响[D]. 广州体育学院, 2024.

[97] Hoshi Y, Tamura M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man[J]. Neuroscience letters, 1993, 150(1): 5–8.

[98] Okada F, Tokumitsu Y, Hoshi Y. Gender-and handedness-related differences of forebrain oxygenation and hemodynamics[J]. Brain Research, 1993, 601(1–2): 337–342.

[99] Durantin G, Dehais F, Delorme A. Characterization of mind wandering using fNIRS[J]. Frontiers in systems neuroscience, 2015, 9: 45.

[100] Bogler C, Mehnert J, Steinbrink J. Decoding vigilance with NIRS[J]. PloS one, 2014, 9(7): e101729.

[101] De Joux N, Russell P N, Helton W S. A functional near-infrared spectroscopy study of sustained attention to local and global target features[J]. Brain and cognition, 2013, 81(3): 370–375.

[102] Helton W S, Warm J S, Tripp L D. Cerebral lateralization of vigilance: a function of task difficulty[J]. Neuropsychologia, 2010, 48(6): 1683–1688.

[103] Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates[J]. Neuroscience Research, 2021, 170: 18–23.

[104] 潘津津, 焦学军, 姜劲, 等. 利用功能性近红外光谱成像方法评估脑力负荷[J]. 光学学报, 2014, 34(11): 344–349.

[105] Meidenbauer K L, Choe K W, Cardenas-Iniguez C. Load-dependent relationships between frontal fNIRS activity and performance: A data-driven PLS approach[J]. NeuroImage, 2021, 230: 117795.

[106] 桑林琼, 王莉, 乔梁, 等. 基于fNIRS的大脑前额叶皮层在不同脑力负荷下的激活模式研究[J]. 陆军军医大学学报, 2022, 44(03): 210–216. DOI:10.16016/j.2097-0927.202106243.

[107] Tian F, Li H, Tian S, 等. Is there a difference in brain functional connectivity between Chinese coal mine workers who have engaged in unsafe behavior and those who have not?[J]. International Journal of Environmental Research and Public Health, 2022, 19(1): 509.

[108] 田方圆. 煤矿工人情景意识的fNIRS脑功能连接特征与分类识别研究[D]. 西安科技大学, 2022.

[109] Tian C, Li H, Tian S. The neurocognitive mechanism linking temperature and humidity with miners’ alertness: an fNIRS study[J]. Scientific reports, 2024, 14(1): 11796.

[110] Tian C, Li H, Tian S. The neurocognitive mechanism linking temperature and humidity with miners’ working memory: an fNIRS study[J]. Frontiers in Human Neuroscience, 2024, 18: 1414679.

[111] 李晓捷. 人体发育学.第2版[M]. 人体发育学.第2版, 2013.

[112] Szczepanski S M, Knight R T. Insights into human behavior from lesions to the prefrontal cortex[J]. Neuron, 2014, 83(5): 1002–1018.

[113] Petrides M. Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey[J]. Journal of Neuroscience, 1995, 15(1): 359–375.

[114] Aron A R, Robbins T W, Poldrack R A. Inhibition and the right inferior frontal cortex: one decade on[J]. Trends in cognitive sciences, 2014, 18(4): 177–185.

[115] Voytek B, Davis M, Yago E. Dynamic neuroplasticity after human prefrontal cortex damage[J]. Neuron, 2010, 68(3): 401–408.

[116] Chao L L, Knight R T. Contribution of human prefrontal cortex to delay performance[J]. Journal of cognitive neuroscience, 1998, 10(2): 167–177.

[117] Daffner K R, Mesulam M, Scinto L. The central role of the prefrontal cortex in directing attention to novel events[J]. Brain, 2000, 123(5): 927–939.

[118] Duncan J. Disorganisation of behaviour after frontal lobe damage[J]. Cognitive neuropsychology, 1986, 3(3): 271–290.

[119] Pinti P, Tachtsidis I, Hamilton A. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Annals of the new York Academy of Sciences, 2020, 1464(1): 5–29.

[120] Mehrabian A, Russell J A. An approach to environmental psychology.[M]. the MIT Press, 1974.

[121] 邓卫华, 易明. 基于SOR模型的在线用户追加评论信息采纳机制研究[J]. 图书馆理论与实践, 2018(08): 33-39+56. DOI:10.14064/j.cnki.issn1005-8214.2018.08.009.

[122] 苑甜甜, 宗义湘, 王俊芹. 农户有机质改土技术采纳行为:外部激励与内生驱动[J]. 农业技术经济, 2021(08): 92–104. DOI:10.13246/j.cnki.jae.2021.08.007.

[123] Gifford R. Environmental psychology: Principles and practice[J]. 2007. Optimal books Colville, WA, 2007.

[124] Norman D A, Shallice T. Attention to action: Willed and automatic control of behavior[M]//Consciousness and self-regulation: Advances in research and theory volume 4. Springer, 1986: 1–18.

[125] Podsakoff N P, Freiburger K J, Podsakoff P M, et al. Laying the foundation for the challenge–hindrance stressor framework 2.0[J]. Annual review of organizational psychology and organizational Behavior, 2023, 10(1): 165–199.

[126] Shields G S, Sazma M A, Yonelinas A P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol[J]. Neuroscience & Biobehavioral Reviews, 2016, 68: 651–668.

[127] Dickerson S S, Kemeny M E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research.[J]. Psychological bulletin, 2004, 130(3): 355.

[128] Ruger M, Gordijn M C, Beersma D G, et al. Time-of-day-dependent effects of bright light exposure on human psychophysiology: comparison of daytime and nighttime exposure[J]. American Journal of Physiology-regulatory, integrative and comparative Physiology, 2006, 290(5): R1413–R1420.

[129] Aston-Jones G, Cohen J D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance[J]. Annu. Rev. Neurosci., 2005, 28(1): 403–450.

[130] Phipps-Nelson J, Redman J R, Dijk D-J, et al. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance[J]. Sleep, 2003, 26(6): 695–700.

[131] Arnsten A F. Stress signalling pathways that impair prefrontal cortex structure and function[J]. Nature reviews neuroscience, 2009, 10(6): 410–422.

[132] Chellappa S L, Gordijn M C, Cajochen C. Can light make us bright? Effects of light on cognition and sleep[J]. Progress in brain research, 2011, 190: 119–133.

[133] Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress[J]. Journal of health and social behavior, 1983: 385–396.

[134] Barnes L L, Harp D, Jung W S. Reliability generalization of scores on the Spielberger state-trait anxiety inventory[J]. Educational and psychological measurement, 2002, 62(4): 603–618.

[135] Oei T P, Evans L, Crook G M. Utility and validity of the STAI with anxiety disorder patients[J]. British Journal of Clinical Psychology, 1990, 29(4): 429–432.

[136] Hu M, Shealy T. Application of functional near-infrared spectroscopy to measure engineering decision-making and design cognition: literature review and synthesis of methods[J]. Journal of Computing in Civil Engineering, 2019, 33(6): 04019034.

[137] Zhu Y, Rodriguez-Paras C, Rhee J, et al. Methodological approaches and recommendations for functional near-infrared spectroscopy applications in HF/E research[J]. Human Factors, 2020, 62(4): 613–642.

[138] Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements[J]. Clinical neurophysiology, 2001, 112(4): 713–719.

[139] Fishburn F A, Ludlum R S, Vaidya C J, et al. Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS[J]. Neuroimage, 2019, 184: 171–179.

[140] Neter J, Kutner M H, Nachtsheim C J. Applied linear statistical models[J]. 1996. Irwin Chicago, 1996.

[141] Tukey J W. The problem of multiple comparisons[J]. Multiple comparisons, 1953.

[142] Cope M, Delpy D T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination[J]. Medical and Biological Engineering and Computing, 1988, 26: 289–294.

[143] Fishburn F A, Ludlum R S, Vaidya C J. Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS[J]. Neuroimage, 2019, 184: 171–179.

[144] Yücel M A, Lühmann A V, Scholkmann F. Best practices for fNIRS publications[J]. Neurophotonics, 2021, 8(1): 012101.

[145] Sitaram R, Zhang H, Guan C. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface[J]. NeuroImage, 2007, 34(4): 1416–1427.

[146] Strangman G, Franceschini M A, Boas D A. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters[J]. Neuroimage, 2003, 18(4): 865–879.

[147] Baron R M, Kenny D A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.[J]. Journal of personality and social psychology, 1986, 51(6): 1173.

中图分类号:

 TD79    

开放日期:

 2025-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式