- 无标题文档
查看论文信息

论文中文题名:

 基于内建电场策略增强石墨相碳氮光催化CO2还原性能研究    

姓名:

 薛莹莹    

学号:

 21211225035    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 纳米材料光催化    

第一导师姓名:

 李燕瑞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-04-19    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Enhanced photocatalytic CO2 reduction performance of graphitic carbon nitride based on built-in electric field    

论文中文关键词:

 光催化 ; 石墨相氮化碳 ; 氧化石墨烯气凝胶 ; 内建电场    

论文外文关键词:

 Photocatalysis ; Graphitic carbon nitrogen ; Graphene oxide aerogel ; Built-in electric field    

论文中文摘要:

       光催化CO2还原能实现直接利用太阳能将CO2转化为有机燃料,是降低CO2浓度解决环境污染问题的绿色方法。以石墨相氮化碳(g-C3N4)为首的碳氮材料,拥有横跨CO2还原和H2O氧化能级,广泛应用于CO2还原反应。但是其电子空穴复合率高、活性位点有限、可见光吸收能力差和反应质子提供不足等问题严重限制其光催化还原性能。本论文针对以上局限提出了相应的改进方法,旨在使光催化CO2还原催化剂更加高效,催化体系更加完善。主要内容包括以下三个方面:

(1)通过引入具有石墨相氮化碳材料相似共轭有机框架的六氮非萘烯类化合物(TPHAP)和三均三嗪基衍生物的三种有机共轭分子构建内建电场,促进电子和空穴的分离效率。研究发现,共轭分子间π-π堆叠作用的增强能够将电子在共轭界面抽离,增强电子空穴分离效率。经过气固相CO2还原测试,发现复合型催化剂的还原产物CO和CH4生成效率相比于单一组分催化剂提高数倍。选取界面电荷、能带结构以及共轭结构相互匹配的催化剂构建强内建电场,是合成优异性能催化剂的有效策略。

(2)为探究能带调控对于内建电场强度的影响规律,并解决块状石墨相氮化碳材料比表面积较低,导致活性位点和可见光响应范围有限问题,通过剥离和元素掺杂的方式制备硼掺杂的能带结构可调的超薄石墨相碳氮纳米片(BCNx),并结合第一章的策略,加入共轭化合物TPHAP,构建系列不同能级差异的异质结构催化剂。研究表明,硼元素掺杂能够有效增强可见光吸收能力,样品BCN400的CO平均产率达到7.6 μmol g-1 h-1。对能带位置不同的BCNx材料,结合上一章方法,通过静电自组装得到能级匹配最协调的复合催化剂TP/BCNx。实验证明TP/BCN400催化性能显著提高,CO平均产率达到60.3 μmol g-1 h-1,有效提升气固相光催化CO2还原性能。

(3)为解决传统气固和气液固催化模式H2O和CO2分子传输能力差,H2O氧化动力学缓慢导致的光催化CO2总体性能差的问题。本章引入金属Ag颗粒与石墨相碳氮筑构肖特基结,制备一体式Ag-CN/GOCA气凝胶催化剂,引入苯甲醇氧化反应替代H2O氧化反应,提出设计介于气-固-液界面的三相的催化模式。经过实验证明,可漂浮三相光催化体系能够有效提升光催化CO2还原效率,金属Ag纳米颗粒与石墨相碳氮材料形成的肖特基结,能够促进催化界面的电荷快速转移。介于气-固-液界面的三相催化体系,能够同时提升体系中CO2气体分子扩散及液相苯甲醇分子传质。该方案通过促进氧化端半反应驱动还原端CO2分子的还原,使还原产物生成速率提升6.3倍,能够从催化体系上解决可见光驱动光催化还原CO2活性低的问题。

论文外文摘要:

      Photocatalytic CO2 reduction can convert CO2 into organic fuel derived by solar energy, which is a green method to reduce CO2 concentration and solve environmental pollution problems. Graphitic carbon nitride (g-C3N4), have been widely used in CO2 reduction reactions due to their cross-energy levels of CO2 reduction and H2O oxidation. However, its photocatalytic reduction performance is seriously limited by its high electron-hole recombination rate, limited active sites, poor visible light absorption capacity and insufficient supply of protons. In this paper, the corresponding improvement methods are proposed for the above limitations, aiming to make the photocatalytic CO2 reduction catalyst more efficient and the catalytic system more perfect. The main contents include the following three aspects:

       (1) The built-in electric field is constructed by introducing three catalysts of 2,5,8-tri(4'-pyridyl)-1,3,4,6,7,9-hexaazaphenalene (TPHAP) and tri-s-triazine derivatives with similar conjugated organic frameworks of graphitic carbon nitride materials to promote the separation rate of electrons and holes. It is found that the enhancement of π-π stacking interaction between conjugated molecules can extract electrons from the conjugated interface and enhance the separation efficiency of electron-hole. It was found that the reduction product CO and CH4 generation efficiency of the composite catalyst was several times higher than that of the single component catalyst based on the gas-solid mode. This work provides a novel strategy for improving CO2 photoreduction through controlling the interface charge, energy band structure and the total.

        (2) For further understanding the relationship between the band structures of heterojunction and built-in electric filed, boron-doped ultra-thin graphite phase carbonitride nanosheets (BCNx) with adjustable band structure were prepared by exfoliation and element doping, which could also solve the problem that the low specific surface area of bulk carbon nitride materials leads to limited active sites and visible light response range. Combined with the strategy of the first chapter, the conjugated compound TPHAP was added to construct a series of heterostructure catalysts with different energy level differences. Studies have shown that boron doping can effectively enhance the visible light absorption capacity and increase the active sites. The average CO yield of the sample BCN400 reaches 7.6 μmol g-1 h-1. By adjusting the energy band position of BCNx material, the most coordinated composite catalyst TP/BCN400 with energy level matching was obtain-ed by electrostatic self-assembly using the method in the previous chapter. The experimental results show that the catalytic performance is significantly improved, and the average yield of CO reaches 60.3 μmol g-1 h-1, which effectively improves the photocatalytic CO2 reduction performance of gas-solid phase.

        (3) The traditional gas-solid and gas-liquid-solid mode for CO2 photoreduction present drawbacks of poor transport capacity of H2O and CO2 molecular and sluggish kinetics of H2O oxidation reaction, resulting in poor photocatalytic CO2 reduction performance. In order to solve above problems, the integrated Ag-CN/GOCA aerogel catalysts in three-phase reaction mode were prepared by introducing the Schottky junction between metal Ag particles and graphitic carbon nitrogen, and replacing H2O oxidation by reactive benzyl alcohol oxidation reaction. It was experimentally proved that the floatable three-phase photocatalytic system can effectively enhance the photocatalytic CO2 reduction efficiency, and the Schottky junction formed by metal Ag nanoparticles and graphitic carbon nitrogen can promote rapid charge separation and transfer at the catalytic interface. The three-phase catalytic system mediated at the gas-solid-liquid interface can simultaneously enhance the diffusion of CO2 gas molecules and the molecular mass transfer of liquid-phase benzyl alcohol in the system. above strategy effectively enhance the CO2 photoreduction performance by promoting the oxidation half-reaction, which can increase the rate of the reduction product generation by 6.3 times, and can solve the problem of low activity of visible-light-driven photocatalytic reduction of CO2 in terms of catalytic system.

参考文献:

[1] Zhang Z, Pan S-Y, Li H, et al. Recent advances in carbon dioxide utilization [J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109799.

[2] Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? [J]. Chemical Society Reviews, 2020, 49(18): 6579-91.

[3] 朱相林. 光催化中内建电场对载流子分离作用的研究 [D]. 山东:山东大学, 2017.

[4] Zhou C, Zeng Z, Zeng G, et al. Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride:Properties, degradation pathway and mechanisms [J]. Journal of Hazardous Materials, 2019, 380: 120815.

[5] 韩世同, 习海玲, 史瑞雪等. 半导体光催化研究进展与展望 [J]. 化学物理学报,2003,(05): 339-49.

[6] 冯程洋. 高效g-C_3N_4基光催化剂的构建及其用于催化降解水体四环素类抗生素的性能和机理研究 [D]. 湖南: 湖南大学, 2021.

[7] Albero J, Peng Y, García H. Photocatalytic CO2 Reduction to C2+ Products [J]. ACS Catalysis, 2020, 10(10): 5734-49.

[8] Ran J, Jaroniec M, Qiao S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and dpportunities [J]. Advanced Materials, 2018, 30(7): 1704649.

[9] 苏扬. 基于内建电场机制的催化材料的设计、制备和性能研究 [D]. 北京: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.

[10] Naldoni A, Altomare M, Zoppellaro G, et al. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production [J]. ACS Catalysis, 2018, 9(1): 345-64.

[11] Zhang G, Xu Y, Yan D, et al. Construction of K+ ion gradient in crystalline carbonnitride to accelerate exciton dissociation and charge separation for visible light H2 production [J]. ACS Catalysis, 2021, 11(12): 6995-7005.

[12] 曹宇辉, 佟宇飞, 张健等. 石墨相氮化碳的红外辅助微波法制备及光催化固氮性能 [J]. 高等学校化学学报,2016,37(07): 1357-63.

[13] Zhou S, Liu Y, Li J, et al. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO [J]. Applied Catalysis B: Environmental, 2014, 158-159: 20-9.

[14] Wang H-N, Zou Y-H, Sun H-X, et al. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode [J]. Coordination Chemistry Reviews, 2021, 438: 213906.

[15] Xie S, Wang Y, Zhang Q, et al. MgO- and Pt-Promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water [J]. ACS Catalysis, 2014, 4(10): 3644-53.

[16] Wan W, Zhang R, Ma M, et al. Monolithic aerogel photocatalysts: a review [J]. Journal of Materials Chemistry A, 2018, 6(3): 754-75.

[17] Lee W H, Lee C W, Cha G D, et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production [J]. Nature Nanotechnology, 2023, 18(7): 754-62.

[18] Niu F, Tu W, Zhou Y, et al. Killing two birds with one stone: State-of-the-art progress in dual-functional photoredox catalysis for solar fuel conversion and selective organic transformation [J]. EnergyChem, 2023, 5(6): 100112.

[19] Fresno F, Iglesias-Juez A, Coronado J M. Photothermal catalytic CO2 conversion: beyond catalysis and photocatalysis [J]. Top Curr Chem (Cham), 2023, 381(4): 21.

[20] Guo Q, Liang F, Li X-B, et al. Efficient and selective CO2 reduction integrated with organic synthesis by solar energy [J]. Chem, 2019, 5(10): 2605-16.

[21] Lin Z, Wang Y, Thi Thuy Nga T, et al. Electron-rich pyrimidine rings enabling crystalline carbon nitride for high-efficiency photocatalytic hydrogen evolution coupled with benzyl alcohol selective oxidation [J]. EES Catalysis, 2023, 1(4): 552-61.

[22] 王敏. 缺陷和内建电场调控Z型异质结的全光谱催化和暗催化机理研究 [D]. 陕西:陕西科技大学, 2022.

[23] Shang F K, Qi M Y, Tan C L, et al. Nanoscale Assembly of CdS/BiVO4 Hybrids for coupling Selective fine chemical synthesis and hydrogen production under Visible Light [J]. ACS Phys Chem Au, 2022, 2(3): 216-24.

[24] Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes [J]. Nano Letters, 2011, 11(6): 2472-7.

[25] Zhang H. Ultrathin two-dimensional nanomaterials [J]. ACS Nano, 2015, 9(10): 9451-69.

[26] Wan S, Chen Y, Fang S, et al. High-strength scalable graphene sheets by freezing stretch-induced alignment [J]. Nature Materials, 2021, 20(5): 624-31.

[27] Li L, Li B, Zhang J. Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage [J]. Journal of Materials Chemistry A, 2016, 4(2): 512-8.

[28] Shi H, He Y, Li Y, et al. Mixed-dimensional assembled superhydrophilic graphene-based aerogel with enhanced mass/charge transportation for efficient photoredox catalysis [J]. Separation and Purification Technology, 2020, 252: 117454.

[29] Wei L, Fu X, Luo M, et al. Synergistic effect of CB and GO/CNT hybrid fillers on the mechanical properties and fatigue behavior of NR composites [J]. RSC Advances, 2018, 8(19): 10573-81.

[30] Zhang M, Jiang W, Liu D, et al. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation [J]. Applied Catalysis B: Environmental, 2016, 183: 263-8.

[31] Bian J, Li Q, Huang C, et al. Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications [J]. Nano Energy, 2015, 15: 353-61.

[32] Ong W-J, Tan L-L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? [J]. Chemical Reviews, 2016, 116(12): 7159-329.

[33] Audebert P, Kroke E, Posern C, et al. State of the art in the preparation and properties of molecular monomeric s-heptazines: syntheses, characteristics, and functional applications [J]. Chemical Reviews, 2021, 121(4): 2515-44.

[34] Horvath-Bordon E, Kroke E, Svoboda I, et al. Alkalicyamelurates, M3[C6N7O3]·xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives [J]. Dalton Trans, 2004, (22): 3900-8.

[35] Redemann C E, Lucas H J. Some Derivatives of cyameluric acid and probable structures of melam, melem and melon [J]. Journal of the American Chemical Society, 2002, 62(4): 842-6.

[36] Fang J, Fan H, Li M, et al. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution [J]. Journal of Materials Chemistry A, 2015, 3(26): 13819-26.

[37] Shi L, Wang T, Zhang H, et al. Electrostatic self‐assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction [J]. Advanced Functional Materials, 2015, 25(33): 5360-7.

[38] Lu Q, Eid K, Li W, et al. Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: strategy and mechanism [J]. Green Chemistry, 2021, 23(15): 5394-428.

[39] Franklin E C. The Ammono Carbonic Acids [J]. Journal of the american chemical society, 2002, 44(3): 486-509.

[40] Li Y, Wang Y, Dong C-L, et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting [J]. Chemical Science, 2021, 12(10): 3633-43.

[41] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2008, 8(1): 76-80.

[42] Ojha N, Bajpai A, Kumar S. Visible light-driven enhanced CO2 reduction by water over Cu modified S-doped g-C3N4 [J]. Catalysis Science & Technology, 2019, 9(17): 4598-613.

[43] Yakiyama Y, Ueda A, Morita Y, et al. Crystal surface mediated structure transformation of a kinetic framework composed of multi-interactive ligand TPHAP and Co(ii) [J]. Chemical Communications, 2012, 48(86): 10651.

[44] Suzuki S, Morita Y, Fukui K, et al. Hexaazaphenalenyl anion revisited: a highly symmetric planar pi system with multiple-networking ability for self-assembled metal complexation [J]. Inorg Chem, 2005, 44(23): 8197-9.

[45] Yakiyama Y, Lee G R, Kim S Y, et al. Formation of a nanometer-thick water layer at high humidity on a dynamic crystalline material composed of multi-interactive molecules [J]. Chem Commun (Camb), 2015, 51(31): 6828-31.

[46] Nakanishi K, Ohtsu H, Fukuhara G, et al. Do anionic pi molecules aggregate in solution? A case study with multi-interactive ligands and network formation [J]. Chemistry, 2019, 25(66): 15182-8.

[47] Suzuki S, Fukui K, Fuyuhiro A, et al. Hexaazaphenalene derivatives: one-pot synthesis, hydrogen-bonded chiral helix, and fluorescence properties [J]. Org Lett, 2010, 12(21): 5036-9.

[48] Deekamwong K, Usov P M, Ohtsu H, et al. Pyridinium modification of a hexaazaphenalene skeleton: structure and spectroelectrochemical analysis [J]. CrystEngComm, 2020, 22(36): 5987-94.

[49] Deekamwong K, Wada Y, Zhu Y, et al. Photoactive hexaazaphenalene‐based coordination network as atwo‐pathway photosensitizer for oxidation of alkanes [J]. ChemCatChem, 2023, 15(3).

[50] Meng J, Zhang J, Fan S-C, et al. Cage-space-partitioned metal–organic frameworks for efficient carbon dioxide capture andconversion [J]. Crystal Growth & Design, 2023, 23(7): 5043-51.

[51] Lee G R, Ohtsu H, Koo J, et al. Crystallinity-dependence of ionic conductivity in the ion pairs of a multi-interactive anion [J]. Chemical Communications, 2016, 52(20): 3962-5.

[52] Li Y, Wang L, Gao X, et al. Construction of a graphitic carbon nitride-based photocatalyst with a strong built-in electric field via π–π stacking interactions boosting photocatalytic CO2 reduction [J]. Journal of Materials Chemistry A, 2024.

[53] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat Nanotechnol, 2008, 3(2): 101-5.

[54] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process [J]. ACS Nano, 2010, 4(7): 4324-30.

[55] Li Y-H, Tang Z-R, Xu Y-J. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis [J]. Chinese Journal of Catalysis, 2022, 43(3): 708-30.

[56] 赵珊珊. 基于g-C3N4或石墨烯的催化材料的制备及性能研究 [D]. 辽宁: 大连理工大学, 2013.

[57] Kotal M, Kim J, Oh J, et al. Recent progress in multifunctional graphene aerogels [J]. Frontiers in Materials, 2016, 3: 29.

[58] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-9.

[59] Hu K, Szkopek T, Cerruti M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels [J]. Journal of Materials Chemistry A, 2017, 5(44): 23123-30.

[60] Zhang Q, Zhang F, Medarametla S P, et al. 3D printing of graphene aerogels [J]. Small, 2016, 12(13): 1702-8.

[61] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4(8): 4806-14.

[62] Yang W, Tang S, Wei Z, et al. Separate-free BiPO4/graphene aerogel with 3D network structure for efficient photocatalytic mineralization by adsorption enrichment and photocatalytic degradation [J]. Chemical Engineering Journal, 2021, 421: 129720.

[63] Zhang X-Y, Li H-P, Cui X-L, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. Journal of Materials Chemistry, 2010, 20(14): 2801.

[64] 郭燕. 光催化剂内建电场构建及其降解水中有机污染物性能研究 [D]. 黑龙江: 哈尔滨工业大学, 2022.

[65] Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light [J]. Adv Mater, 2013, 25(17): 2452-6.

[66] 王伟伟. 基于内建电场增强策略的半导体光催化性能和载流子传输机理研究 [D]. 江西: 南昌航空大学,2022.

[67] Deng A, Sun Y, Gao Z, et al. Internal electric field in carbon nitride-based heterojunctions for photocatalysis [J]. Nano Energy, 2023, 108: 108228.

[68] Jian L, Zhao H, Dong Y, et al. Graphite carbon ring modified carbon nitride with a strong built-in electric field for high photocatalysis-self-Fenton performance [J]. Catalysis Science & Technology, 2022, 12(24): 7379-88.

[69] Sheng Y, Li W, Xu L, et al. High photocatalytic oxygen evolution via strong built-in electric field induced by high crystallinity of perylene imide supramolecule [J]. Adv Mater, 2022, 34(10): 2102354.

[70] Zhang G, Xu Y, Liu G, et al. Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation [J]. Chinese Chemical Letters, 2023, 34(3): 107383.

[71] 李蒙蒙. 光催化材料中载流子的转移性质 [D]. 山东: 山东大学, 2018.

[72] Zhao D, Wang Y, Dong C-L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting [J]. Nature Energy, 2021, 6(4): 388-97.

[73] He W, Liu L, Ma T, et al. Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance [J]. Applied Catalysis B: Environmental, 2022, 306: 121107.

[74] Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea [J]. Applied Catalysis B: Environmental, 2020, 268: 118738.

[75] Ma G, Ning G, Wei Q. S-doped carbon materials: Synthesis, properties and applications [J]. Carbon, 2022, 195: 328-40.

[76] Chu Y-C, Lin T-J, Lin Y-R, et al. Influence of P,S,O-Doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study [J]. Carbon, 2020, 169: 338-48.

[77] Tonda S, Kumar S, Kandula S, et al. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight [J]. Journal of Materials Chemistry A, 2014, 2(19): 6772.

[78] Li Y, Li S, Huang H. Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction [J]. Chemical Engineering Journal, 2023, 457: 141179.

[79] Thorat N, Yadav A, Yadav M, et al. Ag loaded B-doped-g C3N4 nanosheet with efficient properties for photocatalysis [J]. J Environ Manage, 2019, 247: 57-66.

[80] Xu Y, Li C, Xiao Y, et al. Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying [J]. ACS Appl Mater Interfaces, 2022, 14(9): 11567-74.

[81] Zheng Y, Jiao Y, Zhu Y, et al. Molecule-Level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions [J]. J Am Chem Soc, 2017, 139(9): 3336-9.

[82] Fan Q, Zhang X, Ge X, et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction [J]. Advanced Energy Materials, 2021, 11(36): 2101424.

[83] Zhan W, Yu S, Gao L, et al. Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup [J]. ACS Applied Materials & Interfaces, 2017, 10(1): 1093-103.

[84] Ou H, Yang P, Lin L, et al. Carbon nitride aerogels for the photoredox conversion of water [J]. Angewandte Chemie, 2017, 129(36): 11045-50.

[85] Li Y, Xue Y, Gao X, et al. Cayanamide group functionalized crystalline carbon nitride aerogel for efficient CO2 photoreduction [J]. Advanced Functional Materials, 2023, 2312634: 2312634.

[86] Yang Y, Zhang Q, Zhang R, et al. Compressible and recyclable monolithic g-C3N4/Melamine Sponge: afacile ultrasonic-coating approach and enhanced visible-light Photocatalytic Activity [J]. Front Chem, 2018, 6: 156.

[87] Rebber M, Sannemüller H, Jaruszewski M, et al. Light and mass transport computations guide the fabrication of 3D-structured TiO2 and Au/TiO2 aerogel photocatalysts for efficient hydrogen production in the gas phase [J]. Chemistry of Materials, 2023, 35(10): 3849-58.

[88] Wan W, Yu S, Dong F, et al. Efficient C3N4/graphene oxide macroscopic aerogel visible-light photocatalyst [J]. Journal of Materials Chemistry A, 2016, 4(20): 7823-9.

[89] Lau V W-h, Moudrakovski I, Botari T, et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites [J]. Nature Communications, 2016, 7(1): 12165.

[90] Suzuki S, Fukui K, Fuyuhiro A, et al. Hexaazaphenalene derivatives: one-pot synthesis, hydrogen-bonded chiral helix, and fluorescence properties [J]. Organic Letters, 2010, 12(21): 5036-9.

[91] Lau V W-h, Mesch M B, Duppel V, et al. Low-molecular-weight carbon nitrides for solar hydrogen evolution [J]. Journal of the American Chemical Society, 2015, 137(3): 1064-72.

[92] Lian Z, Gao F, Xiao H, et al. Photo‐self‐fenton reaction mediated by atomically dispersed Ag−Co photocatalysts toward efficient degradation of organic pollutants [J]. Angewandte Chemie International Edition, 2024, 63(8): 202318927.

[93] Zhou S, Liu Y, Li J, et al. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO [J]. Applied Catalysis B: Environmental, 2014, s 158–159(3): 20-9.

[94] 胡阔. 高压下π电子作用变化对碳基材料结构与性质影响的研究 [D]. 吉林: 吉林大学,2021.

[95] Wan W, Zhang R, Li W, et al. Graphene–carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes [J]. Environmental Science: Nano, 2016, 3(1): 107-13.

[96] Song X, Lin L, Rong M, et al. Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel [J]. Carbon, 2014, 80: 174-82.

[97] Zhang Y, Wang Z, Liu S, et al. In situ growth of Ag-reduced graphene oxide-carbon nanotube on indium tin oxide and its application for electrochemical sensing [J]. Materials Research Bulletin, 2016, 84: 355-62.

[98] Bao L-h, Wen Y-x, Ling J-w, et al. Preparation and photocatalytic properties of dye-sensitization titanium dioxide/graphene composites for removal of MB [J]. Applied Nanoscience, 2022, 12(12): 3995-4004.

[99] Zhang Y, Wu J, Deng Y, et al. Synthesis and visible-light photocatalytic property of Ag/GO/g-C3N4 ternary composite [J]. Materials Science and Engineering: B, 2017, 221: 1-9.

中图分类号:

 O643.36    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式