论文中文题名: | 改性镁渣基复合胶凝材料的水化特性和矿山充填应用 |
姓名: | |
学号: | 19203077022 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0819 |
学科名称: | 工学 - 矿业工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废处置与充填开采 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-05-28 |
论文外文题名: | Hydration characteristics of modified magnesium slag-based composite cementitious material and its application in mine backfill |
论文中文关键词: | |
论文外文关键词: | Modified magnesium slag ; New mining cementitious materials ; Hydration reaction mechanism ; Synergistic response mechanism ; Backfill industry test |
论文中文摘要: |
针对膏体充填开采所面临的充填成本高、材料短缺等问题,需积极寻求性能优良且环保的新型固废胶凝材料替代水泥制品,以降低矿山充填成本。本文选择皮江法炼镁工艺过程中产生的镁渣为基础材料,通过镁渣源头改性工业试验获得水化活性高、不粉化且硬度大的块渣,制备以改性镁渣为主的矿用胶凝材料,从大宗固废资源循环利用、环境保护和多固废协同处置为出发点,制备全固废膏体充填材料。通过室内试验成功制备了改性镁渣基复合胶凝材料,在此基础上进行改性镁渣基膏体充填材料(MCGB)的配比优化,并对其力学性能和流动性进行试验研究,于2021年4月在麻黄梁煤矿进行充填工业试验示范工程并成功应用。因此,该新型矿用胶凝材料的研发在提升煤矸石、粉煤灰等大宗固废利用率的同时,也为麻黄梁煤矿实现了绿色无害化条带式充填开采,具有良好的经济效益、环境效应和社会效应。 论文以改性镁渣为基础制备了改性镁渣基矿用复合胶凝材料,通过宏观试验、细观试验、现场工业试验等技术手段分析研究,得到以下主要结论: (1)改性镁渣具有与硅酸盐水泥相近的化学成分和矿物相(β-C2S),可完全替代硅酸盐水泥用于采空区充填,是一种潜在的新型胶凝材料。 (2)利用改性镁渣、粉煤灰制备的二元矿用复合胶凝材料,由于改性镁渣自身水解产生大量碱性水化产物,诱导粉煤灰发生火山灰反应,形成富含SiO44-、Ca2+、HSiO43-等多离子反应体系参与水化反应,生成以C-S-H凝胶、Ca(OH)2、AFt(AFm)和其它硅酸盐为主的水化产物,净浆试件养护28d龄期的单轴抗压强度超10MPa,完全适用于采空区充填,同时还可以协同处置煤矸石、粉煤灰等大宗固废资源,具有良好的经济效益。 (3)MCGB试件养护28d龄期的单轴抗压强度均超2.761MPa,最高抗压强度高达5.884MPa,标准坍落度超19cm,泌水率介于1.27~4.82%,可泵时间超4小时,各工作性能指标均满足矿山充填的强度与流动性要求。其次,MCGB试件各龄期的抗压强度整体上随改性镁渣含量的增加而增加,随粉煤灰含量的增加呈先增加后减小的变化。 (4)在麻黄梁煤矿的充填工业试验示范工程应用中,新鲜充填料浆静置2~4小时后料浆无明显分层,标准坍落度大于180mm,表层泌水率小于3%,井下充填体固化28d的抗压强度为6.23MPa,完全满足麻黄梁煤矿充填的强度与流动性要求。相比使用普通硅酸盐水泥用于矿山充填,该新型胶凝材料的使用至少每年可以为麻黄梁煤矿节省4600万元以上的充填成本。 |
论文外文摘要: |
In view of the problems of high backfill cost and material shortage in paste backfill mining, it is necessary to actively seek new solid waste cementing materials with excellent performance and environmental protection to replace cement products, so as to reduce the cost of mine backfill. Magnesium smelting process was numerically simulated in this paper, choose to produce magnesium slag in the process of material, on the basis of through source modified industrial test to obtain high hydration activity of magnesium slag pulverization, hardness, and large pieces of slag, mine of preparation is given priority to with modified magnesium slag gelled material, from bulk solid waste resources recycling, environmental protection and solid waste disposal together more as a starting point, the preparation of all solid waste paste backfill material. The modified magnesium slag-based composite cementing material was successfully prepared through laboratory tests. On this basis, the ratio optimization of modified magnesium slag-based cemented coal gangue backfill material (MCGB) was carried out, and its mechanical properties and flow characteristics were experimentally studied. The backfill industrial test demonstration project was carried out and successfully applied in mahuangliang coal mine. Therefore, the research and development of the new mining composite cementing material not only improves the utilization rate of bulk solid waste such as coal gangue and fly ash, but also realizes the green and harmless strip backfill mining for mahuangliang coal mine, which has good economic benefits, environmental effects and social effects. Based on modified magnesium slag, modified magnesium slag-based mining composite cementification material was prepared in this paper. Through the analysis and research of macro test, micro test, field industrial test and other technical means, the main conclusions are as follows: (1) Modified magnesium slag has similar chemical composition and mineral phase(β-C2S)to portland cement, which can completely replace portland cement for backfill goaf, and is a potential new type of cementing material for mining. (2) Binary mineral compound cementitious material prepared by using modified magnesium slag and fly ash, due to the hydrolysis of modified magnesium slag itself produces a large number of alkaline hydration products, inducing fly ash to undergo pozzolanic reaction, forming a multi-ion reaction system rich in SiO44-、Ca2+、HSiO43-and so on to participate in hydration reaction. The hydration products mainly composed of C-S-H gel, Ca(OH)2, AFt(AFm) and other silicates are generated. The uniaxial compressive strength of the net slurry sample after curing for 28 days is more than 10MPa, which is completely suitable for mine backfill and can also be co-treated with coal gangue, which has good economic benefits. (3) The uniaxial compressive strength of MCGB sample at 28 days curing is over 2.761MPa, the highest compressive strength is as high as 5.884MPa, the standard slump is over 19cm, the bleeding rate is between 1.27 and 4.82%, and the pumping time is over 4 hours. All the basic indexes meet the requirements of strength and fluidity of mine backfill. Secondly, the compressive strength of MCGB samples at different ages increases with the increase of modified magnesium slag content, and increases first and then decreases with the increase of fly ash content. (4) In the application of backfill industrial test and demonstration engineering in mahuangliang coal mine, there is no obvious layering of the new mixing backfill slurry after standing for 2~4 hours, the standard slump is more than 180mm, the bleeding rate of the slurry is less than 3%, and the uniaxial compressive strength of the backfill body after curing for 28 days is 6.23MPa, which fully meets the requirements of strength and fluidity of backfill in mahuangliang coal mine. Compared with ordinary portland cement used for mine backfill, the use of this new cementing material can save more than 46 million yuan of backfill cost for mahuangliang coal mine every year at least. |
参考文献: |
[1] 江国成. 我国“十二五”将综合利用70亿t大宗工业固体废物[J]. 能源研究与利用, 2012, (02):20. [2] 邱华富, 刘浪, 张波, 等. 矿山采空区超前管理与协同利用模式探索[J]. 技术与创新管理, 2020, 41(6):625-630. [3] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(7):1811-1820. [7] 赵才智. 煤矿新型膏体充填材料性能及其应用研究[D]. 江苏:中国矿业大学, 2008. [8] 朱梦博, 王李管, 彭平安, 等. 微震P波到时拾取的PAI-k-MFV算法改进及应用[J]. 煤炭学报, 2017, 42(10):2698-2705. [9] 周华强, 侯朝炯, 孙希奎, 等. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报, 2004, 33(2):154-158. [13] 郭随华, 翁端, 陈益民. 我国水泥工业"生态化"的研究现状和发展趋势[J]. 硅酸盐学报, 2001, 29(2):6. [14] 安英莉. 煤炭全生命周期环境行为及其对土地资源的影响[D]. 江苏:中国矿业大学, 2017. [15] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12):3833-3845. [17] 王金航, 刘家豪, 谭笑, 等. 镁渣对污染土壤中Cd、Pb的稳定化效果研究[J]. 北京化工大学学报(自然科学版), 2020, 47(02):8-16. [18] 李咏玲, 梁鹏翔, 范远, 等. 镁渣的资源利用特性与重金属污染风险[J]. 环境化学, 2015, 34(11):2077-2084. [20] 高峰, 聂祚仁, 王志宏, 等. 中国皮江法炼镁的资源消耗和环境影响分析[J]. 中国有色金属学报, 2006, 16(8):1456-1461. [21] 申明亮. 电解法与皮江法炼镁的效益比较及分析[J]. 有色冶金节能, 2009, 24(5):6-9. [27] 黄从运, 柯劲松, 张明飞, 等. 利用镁渣作混合材生产复合硅酸盐水泥试验研究[J]. 水泥技术, 2005, (05):21-22. [28] 张战刚, 王燕. 镁渣-粉煤灰-水泥复合胶凝材料的初步研究[J]. 石油石化节能, 2011, 1(09):12-13+53-54. [29] 崔自治, 崔彬, 王存存, 等. 镁渣改善沥青粘结性研究[J]. 新型建筑材料, 2009, 36(01):60-62. [30] 彭小芹, 王开宇, 李静, 等. 镁渣的活性激发及镁渣砖制备[J]. 重庆大学学报, 2013, 36(03):48-52+58. [31] 赵爱琴. 利用镁渣研制新型墙体材料[J]. 山西建筑, 2003, (17):48-49. [32] 冯乐, 韩飞, 乔晓磊, 等. 镁渣湿法脱硫性能的实验研究[J]. 环境污染与防治, 2018, 40(10):1112-1115+1121. [33] 朱明, 胡曙光, 杨文. 机械力化学作用对硅酸二钙晶体结构的影响[J]. 水泥工程, 2006, (02):9-13. [34] 穆元冬, 刘志超, 王发洲. γ型硅酸二钙碳酸化反应动力学[J]. 硅酸盐学报, 2022, 50(02):457-465. [35] 汪智勇, 王敏, 文寨军, 等. 硅酸二钙及以其为主要矿物的低钙水泥的研究进展[J]. 材料导报, 2016, 30(1):73-78. [36] 黄文, 文寨军, 王敏. 磷硫复合掺杂对硅酸二钙晶型结构的影响[J]. 硅酸盐通报, 2018, 37(08):2502-2505+2511. [37] 潘晓林, 裴健男, 张灿, 等. 含钠硅酸二钙烧结过程矿相转变行为[J]. 中国有色金属学报, 2020, 30(09):2136-2143. [38] 段丽萍. 炽热镁渣激冷水合产物分形特征研究[D]. 山西:太原理工大学, 2015. [39] 刘松辉, 张海波, 管学茂, 等. 钠离子对硅酸二钙碳化产物的影响[J]. 建筑材料学报, 2018, 21(6):956-962. [40] 李经宽. 镁渣脱硫剂活化性能的实验研究[D]. 山西:太原理工大学, 2008. [41] 韩飞, 贾里, 乔晓磊, 等. 镁渣晶体结构对脱硫活性影响实验[J]. 化工进展, 2019, 38(7):7. [42] 姬克丹, 侯宇, 邓贺, 等. 激冷水合改性镁渣脱硫剂性能实验[J]. 环境工程学报, 2016, 10(12):7235-7240. [43] 侯宇, 冯乐, 李经宽, 等. 碱金属盐改性炽热镁渣激冷水合脱硫剂[J]. 环境工程学报, 2017, 11(05):2885-2889. [44] 侯宇. 添加剂改性炽热镁渣激冷水合脱硫剂的实验研究[D]. 山西:太原理工大学, 2017. [45] 张雄. C2S转晶反应定量调控[J]. 硅酸盐学报, 1995, (06):680-684. [46] 司小飞, 李元昊, 黄艳, 等. 燃煤发电厂贮灰场环境污染与防治[J]. 环境工程, 2017, 35(11):110-113+119. [47] 韩永鹏, 李会泉, 陈波, 等. 高铝粉煤灰资源化过程重金属环境影响研究[J]. 中国环境科学, 2013, 33(11):2013-2017. [48] 高洪阁, 田原宇, 杨翠英, 等. 粉煤灰对污水处理的效果及其环境影响试验研究[J]. 中国地质灾害与防治学报, 2006, (03):141-142+169. [49] 韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42(05):613-620. [50] 祝丽萍, 倪文, 黄迪, 等. 粉煤灰全尾砂胶结充填料[J]. 北京科技大学学报, 2011, 33(10):1190-1196. [51] 宋维龙, 朱志铎, 浦少云, 等. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22):22070-22077. [52] 陈蛟龙, 张娜, 李恒, 等. 赤泥基似膏体充填材料水化特性研究[J]. 工程科学学报, 2017, 39(11):1640-1646. [53] 崔孝炜, 倪文, 任超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(09):687-694. [54] 朱茂兰, 肖妮, 谭良春, 等. 铜渣还原活化制备新型胶凝材料与矿山充填的应用[J]. 中国有色金属学报, 2020, 30(11):2736-2745. [55] 钟侚, 蹇守卫, 柯凯. V~(5+)及Cr~(3+)掺杂对C2S多晶型的影响机制[J]. 济南大学学报(自然科学版), 2011, 25(04):349-353. [56] 钟白茜, 杨南如. 活性β-C2S的水化[J]. 南京工业大学学报(自然科学版), 1987, (02):63-72. [57] 张雄, 吴科如. γ-C2S诱导激活技术途径的研究[J]. 上海建材学院学报, 1992, (Z1):29-34. [63] 程海勇, 吴爱祥, 王贻明, 等. 粉煤灰-水泥基膏体微观结构分形表征及动力学特征[J]. 岩石力学与工程学报, 2016, 35(S2):4241-4248. [64] 吴辉, 倪文, 崔孝炜, 等. 利用热闷钢渣制备低收缩铁路轨枕混凝土[J]. 材料热处理学报, 2014, 35(4):7-12. [66] 张文生, 张江涛, 叶家元, 等. 硅酸二钙的结构与活性[J]. 硅酸盐学报, 2019, 47(11):1663-1669. [76] 阎爱云, 倪文, 张静文, 等. 膏体充填用矿渣-钢渣基胶结剂协同固化Pb(2+)[C]. 第六届尾矿与冶金渣综合利用技术研讨会暨衢州市项目招商对接会论文集, 2015:45-47. [81] 冯国瑞, 任亚峰, 张绪言, 等. 塔山矿充填开采的粉煤灰活性激发实验研究[J]. 煤炭学报, 2011, 36(5):732-737. |
中图分类号: | TD823.7 |
开放日期: | 2022-06-21 |