论文中文题名: |
氢气/甲烷爆炸火焰传播过程自由基辐射光谱特性研究
|
姓名: |
李睿康
|
学号: |
18120089016
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
气体与粉尘爆炸防控
|
第一导师姓名: |
罗振敏
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
林海飞
|
论文提交日期: |
2022-06-23
|
论文答辩日期: |
2022-06-02
|
论文外文题名: |
Study on spectral characteristics of free radical radiation during flame propagation of hydrogen/methane mixtures explosion
|
论文中文关键词: |
氢气/甲烷 ; 爆炸压力 ; 火焰传播 ; 自由基辐射光谱特性 ; 敏感性分析
|
论文外文关键词: |
Hydrogen/Methane ; Eplosion pressure ; Free radical radiation characteristics ; Radiation spectrum ; Elementary reaction process.
|
论文中文摘要: |
︿
气体爆炸火焰传播是一个流体传播、辐射发光、化学反应相互影响和耦合的复杂物理化学作用过程,相关的研究一直是燃烧和爆炸领域中最为基础且最重要的课题,其中气体爆炸自由基辐射和微观反应进程的研究,对致灾机理和防控技术的研究具有非常重要的理论意义。因此,从工业防灾减灾、燃烧爆炸安全角度出发,针对工业生产和日常生活中氢气/甲烷的共存性和易燃易爆性,本文以氢气/甲烷预混气体为研究对象,采用实验研究、理论分析和数值计算的手段。主要开展了四个方面的研究内容:首先,采用20 L水平密闭管道,结合压力传感器和高速摄像机,研究了不同当量比(0.8、1、1.2、1.4)和氢气体积分数(0、0.2、0.4、0.6、0.8、1 (×100/%))的氢气/甲烷爆炸压力特性和火焰传播特性,获得了氢气/甲烷爆炸火焰传播动力学特性和氢气/甲烷爆炸的压力与火焰传播的耦合关系;其次,结合瞬态光谱系统测试,研究了不同位置、不同特征波长的OH、CN、CH自由基辐射光谱特性,获得了氢气/甲烷爆炸自由基辐射光谱特性的位置分布关系。然后,基于化学动力学软件CHEMKIN,利用GRI-Mesh 3.0反应机理,在零维均质反应器内,模拟计算了氢气/甲烷爆炸过程OH、CN、CH等自由基的生成率和敏感性,获得影响自由基生成的主要基元反应。最后,研究了氢气/甲烷爆炸压力、火焰传播和自由基辐射关联,分析了爆炸压力、火焰传播和自由基辐射以及基元反应的耦合机制,建立了氢气/甲烷爆炸宏观特征-微观反应进程的关联。
通过火焰传播动力学的研究,表明氢气体积分数越大,对混合气体爆炸特征参数的影响越明显,且对较高当量比混合气体的影响更加明显。在氢气体积分数α>0.6之后,氢气开始对混合气体各项爆炸压力和火焰传播参数起到主导性的影响,主要体现在Pmax、(dP/dt)max和火焰传播速度等参数的突增现象,以及较低和较高当量比时火焰结构的巨大变化。震荡现象是流场对冲运动的重要诱因,对压力特征参数的影响较微弱。随着氢气体积分数增加,震荡现象持续时间减小,出现震荡现象所需的压力增加,在φ=1~1.2附近,爆炸压力震荡现象更加地明显。压力波对变形“郁金香”火焰前期发育过程的火焰传播过程有比较明显影响,而压力波对典型的“郁金香”火焰传播过程后期的压力演变影响剧烈。
通过自由基辐射光谱特性的研究,发现OH、CH 和CN的主要辐射特征波长分别为308.9 nm、314.5 nm和388.3 nm,在主要辐射特征波长处受氢气体积分数和当量比增加的影响程度最大。OH的最大辐射光谱强度高于CH和CN,氢气体积分数增加对OH的辐射光谱强度具有更强的影响。当量比为1和1.2时的各自由基最大辐射光谱强度整体均高于当量比为0.8和1.4时最大辐射光谱强度。较高和较低当量比情况下的自由基的辐射光谱强度受影响氢气体积分数和当量比增加更大。位置二位于管道中前段,其自由基辐射强度高于其他位置,而位置三和位置四的火焰辐射光谱强度大小对比关系会因实验的配比不同有所变化。
通过氢气/甲烷爆炸的自由基生成率和敏感性分析,表明控制各自由基生成率的主要基元反应种类不受氢气体积分数和当量比的变化的影响。氢气体积分数增加会改变控制各物质敏感性的主要基元反应种类,同时会使得各基元反应的敏感性降低,氢气逐渐占据反应主导地位。氢气/甲烷混合物中氢气优先于甲烷氧化,氢气体积分数增加使得甲烷氧化过程中产生H2减少,促进了H2的消耗。基元反应R38 O2+H=O+OH是氢气体积分数增大到α=0.6以后体系内宏-微观特性得到提升明显的主要原因。氢气体积分数增加,促进基元反应R38大量进行,使得R38对整个反应的影响程度加大。基元反应R38会产生大量的H和OH,增大了CH4、H2、OH和CH的生成和消耗率。CN的生成率主要受甲烷浓度的影响,氢气体积分数对其影响较小,α≥0.6后生成率下降,主要是由于甲烷含量的减少所致。
通过关联性分析,可知变形的“郁金香”火焰自由基的辐射光谱强度主要来源于火焰前锋和余辉发射,而典型的“郁金香”火焰自由基的辐射光谱强度更多的是源于余辉发射。在爆炸压力上升阶段,震荡现象使得位置二爆炸压力下降时位置四处自由基辐射强度增加,位置四爆炸压力下降时使得位置二处自由基辐射强度增加。位置二处的火焰辐射光谱强度高于其他位置的火焰辐射光谱强度,在已燃区域形成的火焰流场对冲运动过程中的大量余辉发射是其主要原因。当量比变化时,最大爆炸压力和CH和CN的最大辐射光谱强度有更好的关联性,而氢气体积分数变化时,最大爆炸压力和OH的最大辐射光谱强度密切关联。
﹀
|
论文外文摘要: |
︿
Flame propagation of gas explosion is a complex physicochemical process involving the coupling and interaction of fluid propagation, radioluminescence, and chemical reactions. Related research has always been the most basic and important topic in the field of combustion and explosion, among which the research on radical radiation and microscopic reaction process of gas explosion has very important theoretical significance for the research of disaster mechanism and prevention and control technology. Therefore, from the perspective of industrial disaster prevention and mitigation, combustion and explosion safety, in view of the coexistence and flammability of hydrogen/methane in industrial production and daily life, This paper takes the hydrogen/methane premixed gas as the research object, and adopts the means of experimental research, theoretical analysis and numerical calculation, and mainly carries out four research contents: Firstly, using a 20 L horizontal closed pipeline, combined with two pressure sensors and a high-speed camera, the hydrogen/methane explosion pressure characteristics and flame propagation characteristics of different equivalence ratios (0.8, 1, 1.2, 1.4) and hydrogen volume fractions {0, 0.2, 0.4, 0.6, 0.8, 1 (×100/%)} were studied, and the flame propagation dynamics and the coupling relationship between hydrogen/methane explosion pressure and flame propagation are obtained. Secondly, combined with the transient spectral system test, the radiation spectral characteristics of OH, CN and CH radicals at different positions and different characteristic wavelengths were studied, and the positional relationship of the radiation spectral characteristics of hydrogen/methane explosion radicals was obtained. Then, based on the chemical kinetics software CHEMKIN, using the GRI-Mesh 3.0 reaction mechanism, in a zero-dimensional homogeneous reactor, the rate of production and sensitivities analysis of free radicals such as OH, CN, and CH in the hydrogen/methane explosion process were simulated and calculated. The main elementary reactions affecting the generation of free radicals are obtained. Finally, the correlation of explosion pressure, flame propagation and radical radiation of hydrogen/methane mixtures was studied, and the coupling mechanism of explosion pressure, flame propagation, radical radiation and elementary reaction was analyzed, and The correlation between the macroscopic characteristics of hydrogen/methane explosion and the microscopic reaction process was established.
Through the study of flame propagation dynamics, it is shown that the larger the hydrogen volume fraction, the more obvious the influence on the characteristic parameters of the mixed gas explosion, and the effect on the explosion characteristic parameters of the mixed gas with higher equivalence ratio is more obvious. When the hydrogen volume fraction α>0.6, hydrogen begins to play a dominant role in the explosion pressure and flame propagation parameters of the gas mixtures, which is mainly reflected in the sudden increase of parameters such as Pmax, (dP/dt)max and flame propagation speed, and the dramatic change in flame structure at lower and higher equivalence ratios. Oscillation of explosion pressure is an important inducement for the hedging motion of the flow field, and has a weak influence on the pressure characteristic parameters. With the increase of the hydrogen volume fraction, the duration of the shock phenomenon decreases, and the pressure required to appear the shock phenomenon increases. The explosion pressure shock phenomenon is more obvious in the vicinity of φ=1~1.2. The pressure wave has a significant impact on the flame propagation process in the early stage of the deformed "tulip" flame development, while the pressure wave has a strong impact on the pressure evolution in the later stage of the typical "tulip" flame propagation process.
Through the study of the spectral characteristics of radical radiation, it is found that the main radiation characteristic wavelengths of OH, CH and CN are at 308.9 nm, 314.5 nm and 388.3 nm, respectively, which are most affected by the increase of hydrogen volume fraction and equivalence ratio at the main radiation characteristic wavelengths. The maximum radiation spectral intensity of OH is higher than that of CH and CN. The increase of the hydrogen volume fraction has a stronger effect on the radiation spectral intensity of OH. When the equivalence ratios are 1 and 1.2, the maximum radiation spectral intensity of each radical is overall higher than that when the equivalence ratios are 0.8 and 1.4. The intensity of the flame radiation spectrum of radicals at higher and lower equivalence ratios are affected more by hydrogen volume fraction and equivalence ratios. Position (window) 2 is located in the middle and front section of the pipeline, while the intensity of the flame radiation spectrum at positions 3 and 4 will vary due to the different ratios of the experiments.
Through the rate of production analysis and sensitivity analysis of free radical of hydrogen/methane mixtures explosion, it shows that the main elementary reaction species controlling the rate of production of each radical was not changed by the changes of hydrogen volume fraction and equivalence ratio. The increase of the hydrogen volume fraction will change the main elementary reaction types that control the sensitivity of each substance, and at the same time, the sensitivity of each elementary reaction will decrease, and hydrogen will gradually occupy the dominant position of the reaction. Hydrogen participates in the oxidation reaction preferentially over methane in the hydrogen/methane mixtures, and the increase in the volume fraction of hydrogen reduces the production of H2 during the oxidation of methane and promotes the consumption of H2. The elementary reaction R38 O2+H=O+OH is the main reason for the obvious improvement of the macro-micro properties of the system after the hydrogen volume fraction increases to α=0.6. The increase of the hydrogen volume fraction promotes a large amount of elementary reaction R38, which increases the influence of R38 on the whole reaction. The elementary reaction R38 produces a large amount of H and OH, which increases the generation and consumption rates of CH4, H2, OH and CH. The formation rate of CN is mainly affected by the methane concentration, the hydrogen volume fraction has little effect on it, and the generation rate decreases when α≥0.6, which is mainly caused by the decrease of methane content.
Through correlation analysis, it can be seen that the radiation spectral intensity of deformed "tulip" flame radicals mainly comes from the flame front and afterglow emission, while the radiation spectral intensity of typical "tulip" flame radicals is more from afterglow emission. The explosion pressure oscillation phenomenon makes the radiation intensity of the free radicals at the position 4 increase when the explosion pressure of the position 2 decreases, and when the explosion pressure of the position 4 decreases, the radiation intensity of the free radicals at the position 2 increases. The flame radiation spectral intensity at position 2 is higher than that at other positions, and the main reason is the large amount of afterglow emission during the hedging motion of the flame flow field formed in the burned area. When the equivalence ratio was changed, the maximum explosion pressure had a better correlation with the maximum radiation spectral intensity of CH and CN, while when the hydrogen volume fraction was changed, the maximum explosion pressure was closely related with the maximum radiation spectral intensity of OH.
﹀
|
参考文献: |
︿
[1] Cui G, Li Z, Yang C. Experimental study of flammability limits of methane/air mixtures at low temperatures and elevated pressures[J]. Fuel, 2016,181:1074-1080. [2] Shen X, Zhang B, Zhang X et, al. Explosion characteristics of methane-ethane mixtures in air[J]. Journal of Loss Prevention in the Process Industries, 2017,45:102-107. [3] Sezer H, Kronz F, Akkerman V et, al. Methane-induced explosions in vented enclosures[J]. Journal of Loss Prevention in the Process Industries, 2017,48:199-206. [4] Vanderstraeten B, Tuerlinckx D, Berghmans J et, al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures[J]. Journal of Hazardous Materials, 1997,56(3):237-246. [5] Kundu S, Zanganeh J, Moghtaderi B. A review on understanding explosions from methane-air mixture[J]. Journal of Loss Prevention in the Process Industries, 2016,40:507-523. [6] Zhang K, Wang Z, Yan C et, al. Effect of size on methane-air mixture explosions and explosion suppression in spherical vessels connected with pipes[J]. Journal of Loss Prevention in the Process Industries, 2017,49:785-790. [7] Pang L, Wang C, Han M et, al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy[J]. Journal of Hazardous Materials, 2015,299:174-180. [8] Tolias I C, Venetsanos A G. An improved CFD model for vented deflagration simulations Analysis of a medium-scale hydrogen experiment[J]. International Journal of Hydrogen Energy, 2018,43(52): 23568-23584. [9] Kang H S, NO H C, Kim S B et, al. Application of the developed CFD analysis methodology to H2 explosion accidents in an open space[J]. International Journal of Hydrogen Energy, 2017,42(2): 1306-1317. [10] Liu Y, Pei P. Asymptotic analysis on autoignition and explosion limits of hydrogen-oxygen mixtures in homogeneous systems[J]. International Journal of Hydrogen Energy, 2006,31(5): 639-647. [11] Yampolsky J, Price C F. Closed-vessel hydrogen-air explosions at high pressures[J]. Symposium (International) on Combustion, 1953,4(1):384-386. [12] Zheng L, Zhu X, Wang Y et, al. Combined effect of ignition position and equivalence ratio on the characteristics of premixed hydrogen/air deflagrations[J]. International Journal of Hydrogen Energy, 2018,43(33):16430-16441. [13] Schmidt M S. Containing hydrogen deflagrations[J]. Journal of Loss Prevention in the Process Industries, 2018,55(4):450-456. [14] Petukhov V A, Naboko I M, Fortov V E. Explosion hazard of hydrogen-air mixtures in the large volumes[J]. International Journal of Hydrogen Energy, 2009,34(14):5924-5931. [15] Salzano E, Cammarota F, Di Benedetto A et, al. Explosion behavior of hydrogen-methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2012,25(3):443-447. [16] Liang W, Liu Z, Law C K. Explosion limits of H2/CH4/O2 mixtures: Analyticity and dominant kinetics[J]. Proceedings of the Combustion Institute, 2019,37(1):493-500. [17] Sun Z Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures[J]. International Journal of Hydrogen Energy, 2019,44(1):469-476. [18] Ciccarelli G, Chaumeix N, Mendiburu A Z et, al. Fast-flame limit for hydrogen/methane-air mixtures[J]. Proceedings of the Combustion Institute, 2019,37(3):3661-3668. [19] Moccia V, D'Alessio J. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures[J]. Energies, 2013,6(1):97-116. [20] Ma Q, Zhang Q, Chen J et, al. Effects of hydrogen on combustion characteristics of methane in air[J]. International Journal of Hydrogen Energy, 2014,39(21):11291-11298. [21] 殷文韬, 傅贵, 袁沙沙等. 2001-2012年我国重特大瓦斯爆炸事故特征及发生规律研究[J]. 中国安全科学学报, 2013,23(02):141-147. [22] 邱俭. 管道燃气安全事故统计分析及对策[J]. 煤气与热力, 2016,36(07):91-93. [23] 沈国光, 沈海涛, 沈显东等. 国内石油化工行业储罐事故统计分析及对策研究[J]. 石油化工安全环保技术, 2016,32(3):35-39. [24] 周心权, 陈国新. 煤矿重大瓦斯爆炸事故致因的概率分析及启示[J]. 煤炭学报, 2008(01): 42-46. [25] 黄有波. 天然气管道燃烧爆炸危害评价研究[D] . 北京: 首都经济贸易大学,2016. [26] 隋延飞. 天然气加气站事故交通应急疏散策略研究[D] . 成都: 西华大学,2010. [27] 关文玲, 蒋军成. 我国化工企业火灾爆炸事故统计分析及事故表征物探讨[J]. 中国安全科学学报, 2008(03):103-107. [28] Moore N P W, Roy B N. Comparative Studies of Methane and Propane as Engine Fuels[J]. Proceedings of the Institution of Mechanical Engineers, 1956,170(1):1157-1172. [29] Hord J. Is Hydrogen a Safe Fuel ?[J]. International Journal, 1978,3(2):157-176. [30] Karim G A, Wierzba I. Comparative Studies of Methane and Propane As Fuels for Spark Ignition and Compression Ignition Engines[J]. Gaswaerme International, 1985,34(1):30-39. [31] Bollinger L E. Experimental Detonation Velocities and Induction Distances in Hydrogen-Air Mixtures[J]. Technical Notes, 1964(January):131-133. [32] Sánchez A L, Williams F A. Recent advances in understanding of flammability characteristics of hydrogen[J]. Progress in Energy and Combustion Science, 2014,41(1):1-55. [33] Karim G. Methane-hydrogen mixtures as fuels[J]. International Journal of Hydrogen Energy, 1996,21(7):625-631. [34] Ganter S, Heinrich A, Meier T et, al. Numerical analysis of laminar methane-air side-wall-quenching[J]. Combustion and Flame, 2017,186:299-310. [35] Zhian H, Zhigang L, Shengguo C et, al. Numerical simulation and study on the transmission law of flame and pressure wave of pipeline gas explosion[J]. Safety Science, 2012,50(4):806-810. [36] Redlinger R. Numerical simulation of hybrid dust/gas explosion experiments in the standard 20-L sphere[J]. Fusion Engineering and Design, 2015,100:419-424. [37] Yan Y, Tang W, Zhang L et, al. Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air[J]. International Journal of Hydrogen Energy, 2014,39(4):1864-1873. [38] Wan X, Zhang Q. Numerical study of influence of initial pressures and temperatures on the lower flammability limits of oxygenated fuels in air[J]. Journal of Loss Prevention in the Process Industries, 2016,41:40-47. [39] Wang J, Huang Z, Tang C et, al. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion[J]. International Journal of Hydrogen Energy, 2009,34(2):1084-1096. [40] Yan Y, Pan W, Zhang L et, al. Numerical study on combustion characteristics of hydrogen addition into methane-air mixture[J]. International Journal of Hydrogen Energy, 2013,38(30):13463-13470. [41] Miao H, Lu L, Huang Z. Flammability limits of hydrogen-enriched natural gas[J]. International Journal of Hydrogen Energy, 2011,36(11):6937-6947. [42] Zhang Y, Huang Z, Wei L et, al. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures[J]. Combustion and Flame, 2012,159(3):918-931. [43] Di Iorio S, Sementa P, Vaglieco B M. Experimental investigation on the combustion process in a spark ignition optically accessible engine fueled with methane/hydrogen blends[J]. International Journal of Hydrogen Energy, 2014,39(18):9809-9823. [44] Salzano E, Cammarota F, Di Benedetto A et, al. Explosion behavior of hydrogen-methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2012,25(3):443-447. [45] Ma Q, Zhang Q, Chen J et, al. Effects of hydrogen on combustion characteristics of methane in air[J]. International Journal of Hydrogen Energy, 2014,39(21):11291-11298. [46] Faghih M, Gou X, Chen Z. The explosion characteristics of methane, hydrogen and their mixtures: A computational study[J]. Journal of Loss Prevention in the Process Industries, 2016,40:131-138. [47] Shen X, Xiu G, Wu S. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017,120:741-747. [48] Di Sarli V, Benedetto A D. Laminar burning velocity of hydrogen-methane/air premixed flames[J]. International Journal of Hydrogen Energy, 2007,32(5):637-646. [49] Kim H, Arghode V, Gupta A. Flame characteristics of hydrogen-enriched methane–air premixed swirling flames[J]. International Journal of Hydrogen Energy, 2009,34(2):1063-1073. [50] Briones A, Mukhopadhyay A, Aggarwal S. Analysis of entropy generation in hydrogen-enriched methane-air propagating triple flames[J]. International Journal of Hydrogen Energy, 2009,34(2): 1074-1083. [51] Park J, Oh C B. Flame structure and global flame response to the equivalence ratios of interacting partially premixed methane and hydrogen flames[J]. International Journal of Hydrogen Energy, 2012,37(9):7877-7888. [52] Jiménez C, Quinard J, Graña-Otero J et, al. Unsteady response of hydrogen and methane flames to pressure waves[J]. Combustion and Flame, 2012,159(5):1894-1908. [53] Dharamshi K, Pal A, Agarwal A K. Comparative investigations of flame kernel development in a laser ignited hydrogen-air mixture and methane-air mixture[J]. International Journal of Hydrogen Energy, 2013,38(25):10648-10653. [54] Hu G, Zhang S, Li Q F et, al. Experimental investigation on the effects of hydrogen addition on thermal characteristics of methane/air premixed flames[J]. Fuel, 2014,115:232-240. [55] Hall J, Petersen E. Development of a Chemical Kinetics Mechanism for CH4/H2/Air Ignition at Elevated Pressures[C]. Aiaa/Asme/Sae/Asee Joint Propulsion Conference & Exhibit, 2013 [56] Hu E, Huang Z, He J et, al. Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2009,34(13):5574-5584. [57] Ying Y, Liu D. Detailed influences of chemical effects of hydrogen as fuel additive on methane flame[J]. International Journal of Hydrogen Energy, 2015,40(9):3777-3788. [58] Vandenschoor F, Verplaetsen F. The upper flammability limit of methane/hydrogen/air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2007,32(13): 2548-2552. [59] Cammarota F, Di Benedetto A, Di Sarli V et, al. Combined effects of initial pressure and turbulence on explosions of hydrogen-enriched methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2009,22(5):607-613. [60] Hu E, Huang Z, He J et, al. Experimental and numerical study on lean premixed methane–hydrogen–air flames at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2009,34(16):6951-6960. [61] Fairweather M, Ormsby M P, Sheppard C G W et, al. Turbulent burning rates of methane and methane–hydrogen mixtures[J]. Combustion and Flame, 2009,156(4):780-790. [62] Liu X, Zhang Q. Influence of initial pressure and temperature on flammability limits of hydrogen-air[J]. International Journal of Hydrogen Energy, 2014,39(12):6774-6782. [63] Wan X, Zhang Q, Shen S L. Theoretical estimation of the lower flammability limit of fuel-air mixtures at elevated temperatures and pressures[J]. Journal of Loss Prevention in the Process Industries, 2015,36:13-19. [64] Li Y, Bi M, Li B et, al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels[J]. Fuel, 2018,233(June):269-282. [65] 姜延欢, 李国岫, 孙作宇等. 湍流强度对CH4/H2预混火焰结构特性的影响[J]. 燃烧科学与技术, 2017,23(06):505-510. [66] Tseng C. Effects of hydrogen addition on methane combustion in a porous medium burner[J]. International Journal of Hydrogen Energy, 2002,27(6):699-707. [67] Lowesmith B J, Mumby C, Hankinson G et, al. Vented confined explosions involving methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2011,36(3):2337-2343. [68] Emami S D, Rajabi M, Che Hassan C R et, al. Experimental study on premixed hydrogen/air and hydrogen-methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy, 2013,38(32):14115-14120. [69] Ma Q, Zhang Q, Pang L et, al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014,27(1): 65-73. [70] Ma Q, Zhang Q, Pang L et, al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014,27(1): 65-73. [71] Pang L, Wang C, Han M et, al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh, aluminum, alloy[J]. Journal of Hazardous Materials, 2015,299: 174-180. [72] Bouras F, El Hadi Attia M, Khaldi F et, al. Control of methane flame properties by hydrogen fuel addition: Application to power plant combustion chamber[J]. International Journal of Hydrogen Energy, 2017,42(13):8932-8939. [73] Porowski R, Teodorczyk A. Experimental study on DDT for hydrogen-methane-air mixtures in tube with obstacles[J]. Journal of Loss Prevention in the Process Industries, 2013,26(2):374-379. [74] 余明高, 袁晨樵, 郑凯. 管道内障碍物对加氢甲烷爆炸特性的影响[J]. 化工学报, 2016,67(12): 5311-5319. [75] 王鲁庆, 马宏昊, 王波等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究[J]. 高压物理学报, 2018,32(03):123-129. [76] 王鲁庆, 马宏昊, 王波等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究[J]. 高压物理学报, 2018,32(03):123-129. [77] 余明高, 袁晨樵, 郑凯. 管道内障碍物对加氢甲烷爆炸特性的影响[J]. 化工学报, 2016,67(12): 5311-5319. [78] Kondo S, Takizawa K, Takahashi A et, al. Extended Le Chatelier's formula and nitrogen dilution effect on the flammability limits[J]. Fire Safety Journal, 2006,41(5):406-417. [79] Tahtouh T, Halter F, Samson E et, al. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames[J]. International Journal of Hydrogen Energy, 2009,34(19):8329-8338. [80] Li Q, Lin B, Dai H et, al. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures[J]. Powder Technology, 2012,229:222-228. [81] Luo Z, Wang T, Tian Z et, al. Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2/ABC powder[J]. Journal of Loss Prevention in the Process Industries, 2014,30(1):17-23. [82] Vandenschoor F, Verplaestsen F, Berghamans J. Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures[J]. Journal of Hazardous Materials, 2008,153(3):1301-1307. [83] Shoshin Y L, Goey L P. Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters[J]. Experimental Thermal and Fluid Science, 2010,34(3): 373-380. [84] Van den Schoor F, Hermanns R T E, van Oijen J A et, al. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures[J]. Journal of Hazardous Materials, 2008,150(3):573-581. [85] Vandenschoor F, Verplaestsen F. The upper flammability limit of methane/hydrogen/air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2007,32(13): 2548-2552. [86] Wierzba I. Rich flammability limits of fuel mixtures involving hydrogen at elevated temperatures[J]. International Journal of Hydrogen Energy, 2000,25(1):75-80. [87] Liu J, Wang J, Zhang N et, al. On the explosion limit of syngas with CO2 and H2O additions[J]. International Journal of Hydrogen Energy, 2018,43(6):3317-3329. [88] Fernández-Tarrazo E, Sánchez-Sanz M, Sánchez A L et, al. Minimum ignition energy of methanol-air mixtures[J]. Combustion and Flame, 2016,171:234-236. [89] Ning J G, Wang C, Lu J. Explosion characteristics of coal gas under various initial temperatures and pressures[J]. Shock Waves, 2006,15(6):461-472. [90] Yue J H, Zhou H, Zhu M Q. Experimental study of effect of hydrogen addition on combustion of low caloric value gas fuels[J]. International Journal of Hydrogen Energy, 2019,44(11):5585-5591. [91] Wang W, Sun Z. Experimental studies on explosive limits and minimum ignition energy of syngas: A comparative review[J]. International Journal of Hydrogen Energy, 2019,44(11):5640-5649. [92] Mitu M, Brandes E. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels[J]. Fuel, 2017,203:460-468. [93] Mitu M, Giurcan V, Razus D et, al. Propagation indices of methane-air explosions in closed vessels[J]. Journal of Loss Prevention in the Process Industries, 2017,47:110-119. [94] Cooper M G, Fairweather M, Tite J P. On the mechanisms of pressure generation in vented explosions[J]. Combustion and Flame, 1986,65(1):1-14. [95] Mitu M, Prodan M, Giurcan V et, al. Influence of inert gas addition on propagation indices of methane–air deflagrations[J]. Process Safety and Environmental Protection, 2016,102:513-522. [96] Dahoe A E, Zevenbergen J F, Lemkowitz S M et, al. Dust explosions in spherical vessels: The role of flame thickness in the validity of the "cube-root law"[J]. Journal of Loss Prevention in the Process Industries, 1996,9(1):33-44. [97] Fumagalli A, Derudi M, Rota R et, al. Estimation of the deflagration index KSt for dust explosions: A review[J]. Journal of Loss Prevention in the Process Industries, 2016,44:311-322. [98] 张驰. 稀释气体和氢气对甲烷/空气预混层流火焰燃烧特性的影响研究[D] . 重庆: 重庆大学, 2016. [99] 陈正. 奇异摄动在层流预混火焰理论研究中的应用[J]. 力学学报, 2018,50(6):1418-1435. [100] 陈正. 奇异摄动在层流预混火焰理论研究中的应用[J]. 力学学报, 2018,50(06):1418-1435. [101] Huang Z, Zhang Y, Zeng K et, al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006,146(1):302-311. [102] E. Mallard H L C. Recherches expérimentales et théoriques surla combustion de mélanges gazeux explosifs[J]. Annales des mines, 1883(8):274-568. [103] C Ellis O. Flame movement in gaseous explosive mixtures[J]. Fuel Science, 1928(7):502-508. [104] Clanet C S G. On the "tulip flame" phenomenon[J]. combustion and flame, 1996(105):225-238. [105] Xiao H, Sun J, Chen P. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber[J]. J Hazard Mater, 2014,268:132-139. [106] 毕明树, 董呈杰, 周一卉. 密闭长管内甲烷-空气爆炸火焰传播数值模拟[J]. 煤炭学报, 2012,37(1):127-131. [107] 丁小勇. 甲烷-空气爆炸火焰传播的微观研究[D] . 中北大学安全技术及工程, 2013. [108] 高建村, 周尚勇, 胡守涛等. 基于高速摄影技术的苯蒸气爆炸现象研究[J]. 工业安全与环保, 2019,45(3):1-3. [109] 李毅. 管道中氢-空和甲烷-空预混火焰传播与压力震荡研究[D]. 焦作: 河南理工大学, 2015. [110] 路长, 李毅, 潘荣锟. 管道截面对氢气/空气预混爆炸影响的实验研究[J]. 火灾科学, 2015(2): 68-74. [111] 宋占兵, 陈彦泽, 多英全. 热边界条件对平板狭缝中火焰形状的影响[J]. 石河子大学学报(自然科学版), 2007,25(5):637-642. [112] 宋占兵, 陈彦泽, 多英全等. 点火方式对平板狭缝中预混火焰形状的影响[J]. 石油化工设备, 2007,36(6):19-23. [113] 宋占兵, 丁信伟, 喻健良等. 扩散-热和气体动力学不稳定性对管道中预混火焰形状的影响[J]. 天然气工业, 2004,24(4):97-100. [114] 孙少辰, 丁春辉, 胡熙玉等. 波纹管道阻火器内火焰传播的实验与数值模拟研究:2016年全国特种设备安全与节能学术会议,厦门,2016. [115] 闫明. 分岔管道内预混气火焰传播过程数值模拟[D].哈尔滨工程大学热能工程,2015. [116] 余明高, 郑凯, 郑立刚等. 基于Matlab图像处理的瓦斯爆炸火焰传播速度研究[J]. 安全与环境学报, 2014,14(1):6-9. [117] 余明高, 郑凯, 郑立刚等. 管道开口阻塞比对瓦斯爆炸火焰传播特征的影响[J]. 中国矿业大学学报, 2014,43(2):183-188. [118] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D]. 重庆: 重庆大学, 2017. [119] Xiao H, An W, Duan Q et, al. Dynamics of premixed hydrogen/air flame in a closed combustion vessel[J]. International Journal of Hydrogen Energy, 2013,38(29):12856-12864. [120] Xiao H, Duan Q, Sun J. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews, 2018,81(11):1988-2001. [121] Xiao H, Houim R W, Oran E S. Formation and evolution of distorted tulip flames[J]. Combustion and Flame, 2015,162(11):4084-4101. [122] 余明高, 阳旭峰, 郑凯等. 障碍物对甲烷/氢气爆炸特性的影响[J]. 爆炸与冲击, 2018,38(01): 19-27. [123] Starke R, Roth P. An experimental investigation of flame behavior during explosions in cylindrical enclosures with obstacles[J]. Combustion and Flame, 1989,75(2):111-121. [124] Zheng K, Yu M, Zheng L et, al. Effects of hydrogen addition on methane-air deflagration in obstructed chamber[J]. Experimental Thermal and Fluid Science, 2017,80:270-280. [125] Kang H S, No H C, Kim S B et, al. Methodology of CFD analysis for evaluating H2 explosion accidents in an open space[J]. International Journal of Hydrogen Energy, 2015,40(7):3075-3090. [126] Makarov D, Verbecke F, Molkov V et, al. An intercomparison of CFD models to predict lean and non-uniform hydrogen mixture explosions[J]. International Journal of Hydrogen Energy, 2010, 35(11):5754-5762. [127] Tolias I C, Stewart J R, Newton A et, al. Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure[J]. Journal of Loss Prevention in the Process Industries, 2018,52(8): 125-139. [128] Vyazmina E, Jallais S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016,41(33):15101-15109. [129] Yakovenko I S, Ivanov M F, Kiverin A D et, al. Large-scale flame structures in ultra-lean hydrogen-air mixtures[J]. International Journal of Hydrogen Energy, 2018,43(3):1894-1901. [130] 党新宪, 赵坚行, 张欣等. 应用PIV技术测试模型环形燃烧室流场[J]. 航空动力学报, 2009, 24(07):1470-1475. [131] 刘洪, 陈方, 励孝杰等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学, 2016,30(01): 28-42. [132] 刘顺, 徐惊雷, 俞凯凯. 基于PIV技术的压力场重构算法实现与研究[J]. 实验流体力学, 2016, 30(04):56-65. [133] 刘志刚. 燃烧流场的温度与速度分布同时测量研究[D] . 青岛: 青岛科技大学, 2018. [134] Nebuchinov A S, Lozhkin Y A, Bilsky A V et, al. Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet[J]. Experimental Thermal and Fluid Science, 2017, 80:139-146. [135] 付在国, 赵飞宇, 张莉等. PIV与PLIF同步测量方法在湍流扩散研究中的应用[J]. 上海电力学院学报, 2019,35(01):90-95. [136] 刘琼蔚, 罗振敏. 基于PIV对瓦斯爆炸流场的综述及展望[J]. 技术与创新管理, 2019,40(02): 284-290. [137] Zhang X H, Simoens S, Feng S X. Viscosity and temperature influences on PLIF[J]. Procedia Engineering, 2012,28(2011):683-687. [138] 陈备. OH-PLIF定量测量方法及混合气燃烧动力学研究[D] . 重庆: 重庆大学, 2018. [139] 李红, 李博, 高强等. OH/CH2O基于PLIF测量得到的火焰面密度比较研究[J]. 燃烧科学与技术, 2018,24(06):523-527. [140] 朱文堃, 齐洪亮, 杨玉奇等. 基于OH-PLIF测量技术的煤粉射流火焰着火燃烧特性[J]. 燃烧科学与技术, 2019,25(02):175-181. [141] Shen Y, Li F, Liu Z et, al. Study on the characteristics of evaporation–atomization–combustion of biodiesel[J]. Journal of the Energy Institute, 2018(November):1-10. [142] Wang J, Chang M, Zhang M et, al. Flame front identification and its effect on turbulent premixed flames topology at high pressure[J]. Experimental Thermal and Fluid Science, 2019,107(4): 107-117. [143] Boyette W R, Elbaz A M, Guiberti T F et, al. Experimental investigation of the near field in sooting turbulent nonpremixed flames at elevated pressures[J]. Experimental Thermal and Fluid Science, 2019,105(4):332-341. [144] Charogiannis A, Markides C N. Spatiotemporally resolved heat transfer measurements in falling liquid-films by simultaneous application of planar laser-induced fluorescence (PLIF), particle tracking velocimetry (PTV) and infrared (IR) thermography[J]. Experimental Thermal and Fluid Science, 2019,107:169-191. [145] Collins B D, Jacobs J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Journal of Fluid Mechanics, 2002,464:113-136. [146] Moëll D, Lantz A, Bengtson K et, al. Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine Burner[J]. Journal of Engineering for Gas Turbines and Power, 2019,141(7). [147] 李树峰. 激光光谱技术在燃烧诊断中的应用[J]. 物理与工程, 2010,20(5):37-40. [148] Porter R P, Clark A H, Kaskan W E et, al. A study of hydrocarbon flames[J]. Symposium (International) on Combustion, 1967,11(1):907-917. [149] Kaskan W E. Abnormal Excitation of OH in H2/O2/N2 Flames[J]. The Journal of Chemical Physics, 1959,31(4):944-956. [150] Oh J. Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions[J]. Energy, 2016,116:986-997. [151] Roy R, Gupta A K. Flame structure and emission signature in distributed combustion[J]. Fuel, 2020,262:116460. [152] Navakas R, Saliamonas A, Striūgas N et, al. Effect of producer gas addition and air excess ratio on natural gas flame luminescence[J]. Fuel, 2018,217:478-489. [153] Parameswaran T, Gogolek P, Hughes P. Estimation of combustion air requirement and heating value of fuel gas mixtures from flame spectra[J]. Applied Thermal Engineering, 2016,105:353-361. [154] He L, Guo Q, Gong Y et, al. Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames[J]. Combustion and Flame, 2019,201:12-22. [155] Giassi D, Cao S, Bennett B A V et, al. Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity[J]. Combustion and Flame, 2016,167:198-206. [156] 李孝斌, 李会荣, 何昆等. 甲烷爆炸感应期内C2自由基及其特征光谱分析[J]. 西安科技大学学报, 2015,35(2):248-252. [157] 李孝斌, 李会荣, 何昆等. 甲烷爆炸感应期内CN/CH/CHO/CH2O/NCN特征光谱分析[J]. 煤炭学报, 2014,39(10):2042-2046. [158] 刘奎, 李孝斌, 郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究[J]. 光谱学与光谱分析, 2015(8):2067-2072. [159] 李孝斌, 张瑞杰, 崔沥巍等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J]. 爆炸与冲击, 2020,40(3):10-20. [160] 杜诗萌. 基于光谱分析和神经网络技术的火焰燃烧特性研究[D]. 北京: 华北电力大学, 2015. [161] 罗振敏, 王涛, 文虎等. CO对CH4爆炸及自由基发射光谱特性的影响[J]. 煤炭学报, 2019,44(7): 2167-2177. [162] Wang T, Luo Z, Wen H et, al. Experimental study on the explosion and flame emission behaviors of methane-ethylene-air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2019,60: 183-194. [163] Luo Z, Li D, Su B et, al. Thermodynamic effects of the generation of H*/OH*/CH2O* on flammable gas explosion[J]. Fuel, 2020,280:118679. [164] Luo Z, Li D, Su B et, al. On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases[J]. Energy, 2020,198:117329. [165] Kathrotia T. Reaction kinetics modeling of OH*, CH*, and C2* chemiluminescence[D]. Heidelberg: University of Heidelberg, 2011. [166] Haber L C. An investigation into the origin, measurement and application of chemiluminescent light emissions from premixed flames[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2000. [167] Hall J M, Petersen E L. An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures[J]. International Journal of Chemical Kinetics, 2006,38(12): 714-724. [168] Gimeno-Escobedo E, Cubero A, Ochoa J S et, al. A reduced mechanism for the prediction of methane-hydrogen flames in cooktop burners[J]. International Journal of Hydrogen Energy, 2019,44(49):27123-27140. [169] Wang J, Huang Z, Tang C et, al. Numerical study of the effect of hydrogen addition on methane-air mixtures combustion[J]. International Journal of Hydrogen Energy, 2009,34(2):1084-1096. [170] Sanchirico R, Di Benedetto A, Garcia-Agreda A et, al. Study of the severity of hybrid mixture explosions and comparison to pure dust-air and vapour-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2011,24(5):648-655. [171] Fumagalli A, Derudi M, Rota R et, al. Estimation of the deflagration index K St for dust explosions: A review[J]. Journal of Loss Prevention in the Process Industries, 2016,44:311-322. [172] Wang T, Zhang X, Zhang J et, al. Automatic generation of a kinetic skeletal mechanism for methane-hydrogen blends with nitrogen chemistry[J]. International Journal of Hydrogen Energy, 2018,43(6):3330-3341. [173] Khan A R, Ravi M R, Ray A. Experimental and chemical kinetic studies of the effect of H2 enrichment on the laminar burning velocity and flame stability of various multicomponent natural gas blends[J]. International Journal of Hydrogen Energy, 2019,44(2):1192-1212. [174] Chaumeix N, Pichon S, Lafosse F et, al. Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures[J]. International Journal of Hydrogen Energy, 2007,32(13): 2216-2226. [175] Ji C, Wang D, Yang J et, al. A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities[J]. International Journal of Hydrogen Energy, 2017,42(27):17260-17274. [176] Bougrine S, Richard S, Nicolle A et, al. Numerical study of laminar flame properties of diluted methane-hydrogen-air flames at high pressure and temperature using detailed chemistry[J]. International Journal of Hydrogen Energy, 2011,36(18):12035-12047. [177] Ying Y, Liu D. Detailed influences of chemical effects of hydrogen as fuel additive on methane flame[J]. International Journal of Hydrogen Energy, 2015,40(9):3777-3788. [178] Luque J A. LIFBASE: database and spectral simulation (version 1.5) [J]. SRI International Report mp, 1996. [179] Zhang P, Wang J, Liang J et, al. Explosions of gasoline vapor/air mixture in closed vessels with different shapes and sizes[J]. Journal of Loss Prevention in the Process Industries, 2019,57:327-334. [180] Bioche K, Pieyre A, Ribert G et, al. The role of gravity in the asymmetry of flames in narrow combustion chambers[J]. Combustion and Flame, 2019,203:238-246. [181] Khokhlov A M, Oran E S, Wheeler J C. Scaling in buoyancy-driven turbulent premixed flames[J]. Combustion and Flame, 1996,105(1):28-34. [182] 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究[D].合肥:中国科学技术大学,2013. [183] Samaniego J M, Egolfopoulos F N, Bowman C T. CO2* Chemiluminescence in Premixed Flames[J]. Combustion Science and Technology, 1995,109(1-6):183-203. [184] Guiberti T F, Durox D, Schuller T. Flame chemiluminescence from CO2- and N2- diluted laminar CH4/air premixed flames[J]. Combustion and Flame, 2017,181:110-122. [185] García-Armingol T, Ballester J, Smolarz A. Chemiluminescence-based sensing of flame stoichiometry: Influence of the measurement method[J]. Measurement, 2013,46(9):3084-3097. [186] Zhu X, Khateeb A A, Roberts W L et, al. Chemiluminescence signature of premixed ammonia- methane-air flames[J]. Combustion and Flame, 2021,231:111508. [187] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D] . 重庆:重庆大学, 2017. [188] 张勇, 黄佐华, 廖世勇等. 天然气-氢气-空气混合气的层流燃烧速度测定[J]. 内燃机学报, 2006(02):97-103. [189] Cui G, Wang S, Liu J et, al. Explosion characteristics of a methane/air mixture at low initial temperatures[J]. Fuel, 2018,234(66):886-893. [190] Tang C, Zhang Y, Huang Z. Progress in combustion investigations of hydrogen enriched hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2014,30:195-216. [191] Luo Z, Li R, Wang T et, al. Explosion pressure and flame characteristics of CO/CH4/air mixtures at elevated initial temperatures[J]. Fuel, 2020,268:117377. [192] Chen Z, Dai P, Chen S. A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2012, 37(13):10390-10396. [193] Nilsson E J K, van Sprang A, Larfeldt J et, al. The comparative and combined effects of hydrogen addition on the laminar burning velocities of methane and its blends with ethane and propane[J]. Fuel, 2017,189:369-376. [194] Kathrotia T, Fikri M, Bozkurt M et, al. Study of the H+O+M reaction forming OH∗: Kinetics of OH chemiluminescence in hydrogen combustion systems[J]. Combustion and Flame, 2010,157(7): 1261-1273. [195] Reyes M, Tinaut F V, Giménez B et, al. Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures[J]. International Journal of Hydrogen Energy, 2018,43(42):19778-19791. [196] Withrow L, Rassweiler G M. Spectroscopic Studies of Engine Combustion[J]. Industrial & Engineering Chemistry, 1931,23(7):769-776. [197] Walsh K T, Long M B, Tanoff M A et, al. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame[J]. Symposium (International) on Combustion, 1998,27(1):615-623. [198] Devriendt K, Van Look H, Ceursters B et, al. Kinetics of formation of chemiluminescent CH(A2Δ) by the elementary reactions of C2H(X2Σ+) with O(3P) and O2(X3Σg−): A pulse laser photolysis study[J]. Chemical Physics Letters, 1996,261(4):450-456. [199] Najm H N, Paul P H, Mueller C J et, al. On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate[J]. Combustion and Flame, 1998,113(3):312-332. [200] Panoutsos C S, Hardalupas Y, Taylor A M K P. Numerical evaluation of equivalence ratio measurement using OH∗ and CH∗ chemiluminescence in premixed and non-premixed methane–air flames[J]. Combustion and Flame, 2009,156(2):273-291. [201] Schefer R W, Kulatilaka W D, Patterson B D et, al. Visible emission of hydrogen flames[J]. Combustion and Flame, 2009,156(6):1234-1241. [202] García-Armingol T, Ballester J. Influence of fuel composition on chemiluminescence emission in premixed flames of CH4/CO2/H2/CO blends[J]. International Journal of Hydrogen Energy, 2014,39(35):20255-20265. [203] Luque J, Jeffries J B, Smith G P et, al. Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4-O2-N2 and CH4-NO-O2-N2 flames[J]. Combustion and Flame, 2001,126(3):1725-1735. [204] Oh J. Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions[J]. Energy, 2016,116:986-997. [205] Costes M, Dorthe G, Destriau M. Vibrational distribution in CH(A2Πi) from the reaction C+N2O→CN+NO[J]. Chemical physics letters, 1979,61(3). [206] Roberts A. Perry C F M. The rate and mechnism of the reaction of HCN with oxygen atoms over the temperature range 540-900K[J]. The Combustion Institute, 1984:639-646. [207] Merola S S, Di Iorio S, Irimescu A et, al. Spectroscopic characterization of energy transfer and thermal conditions of the flame kernel in a spark ignition engine fueled with methane and hydrogen[J]. International Journal of Hydrogen Energy, 2017,42(18):13276-13288. [208] Graña-Otero J, Mahmoudi S. Excited OH kinetics and distribution in H2 premixed flames[J]. Fuel, 2019,255:115750. [209] Zhang Y, Fu J, Shu J et, al. Numerical study on auto-ignition characteristics of hydrogen-enriched methane under engine-relevant conditions[J]. Energy Conversion and Management, 2019,200: 112092. [210] Nie B, Yang L, Ge B et, al. Chemical kinetic characteristics of methane/air mixture explosion and its affecting factors[J]. Journal of Loss Prevention in the Process Industries, 2017,49:675-682.
﹀
|
中图分类号: |
X932
|
开放日期: |
2024-06-23
|