- 无标题文档
查看论文信息

题名:

 低频声场作用下扩散火焰响应机制与熄灭临界特性研究    

作者:

 史学强    

学号:

 19120089023    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

导师姓名:

 陈晓坤    

导师单位:

 西安科技大学    

第二导师姓名:

 张铁岗    

提交日期:

 2023-01-06    

答辩日期:

 2022-12-08    

外文题名:

 Study on the response mechanism and extinguishing critical characteristics of diffuse flame under the effect of low frequency acoustic field    

关键词:

 扩散火焰 ; 低频声场 ; 受迫燃烧 ; 临界条件 ; 近极限熄灭    

外文关键词:

 Diffusion flame ; Low frequency acoustic field ; Forced combustion ; Critical conditions ; Near–limit extinction    

摘要:

在当前低碳高热值能源大力推广利用的背景下,气体燃料火灾的发生频率及造成损失均逐年增加。除了直接损失,传统灭火技术或材料灭火过程中造成的次生损失和伴生损失也不容忽视。绿色环保且可避免次生损失和伴生损失灭火方案已成为亟需重点关注的前沿问题,低频声场灭火技术为解决上述难题提供了可能。本文系统地探究了低频声场作用下扩散火焰受迫燃烧响应特征及演变规律,研究了火焰熄灭临界条件与作用机制。本项工作为低频声场灭火相关科学研究提供了详尽的实验数据与特性分析,为开发清洁高效的灭火技术提供了依据。

首先,基于声学与速度测量仪器测试了声场灭火系统激发的声学与流体流动特征,分析了声学时域和频域特征,结合实验结果与数值模拟解耦了近声场关键流动特征。结果表明:近声场包含声波和流体流动两种关键物理信息,声场横向中心处有效声压高,边缘有效声压低,有效声压与频率,功率正相关。解耦了近声场时均流与周期流,并提出时均横向速度和时均RMS速度表征两种流动。

其次,采用搭建的声场灭火系统,利用工业高速摄像机、彩色摄像机、热电偶等仪器测试了火焰受迫燃烧特性,包括火焰形态、火焰温度、火焰周期运动等特征。低频声场作用下火焰向水平方向倾斜,呈周期性运动,火焰体呈暗蓝色,火焰高度降低、宽度增加;识别并表征了声场作用下夹断、拉伸、分叉和折叠等火焰特殊行为;基于近声场关键参数,提出了表征近声场特性的无量纲数(Rea)和声学尺度(ξ);建立了考虑声场关键参数、燃料流量、燃料种类和燃料出口直径的扩散火焰高度、宽度和倾角全局耦联模型。随着声场频率由30 Hz增加到100 Hz,火焰高概率区的温度由低于自由火焰温度增加到高于自由火焰温度,声场对火焰高概率区作用由降温转变为促燃。声场作用下扩散火焰纵向与横向频率主要表现为主频“锁相”和主频变化较小的线性响应以及低通滤波非线性响应。建立了高概率区无量纲温度与近声场无量纲参数全局模型,构建了声场作用下的火焰纵向频率模型。

最后,通过增强声场功率,研究了近声场条件下火焰熄灭特性,分析了扩散火焰的近极限熄灭形貌特性与形态参数。火焰近极限熄灭行为呈现出增强式的受迫燃烧特征。火焰熄灭关键参数为时均RMS速度,临界时均RMS速度与燃料流量和燃烧器出口直径呈正相关。构建了临界时均RMS速度与火源参数关联全局数学模型。根据Da数和标量耗散率相关概念建立了声场扑灭扩散火焰判据。采用Da数概念阐释了近声场条件下火焰熄灭的化学反应与临界位移机制,基于火焰熄灭临界耗散率参数的恒值性,揭示了近声场条件下火焰熄灭化学反应与动力学机制。

外文摘要:

Under the current background of low–carbon and high–calorific value energy utilization, the probability of gas fuel fire occurrence and the loss caused by fire are increasing year by year. In addition to direct losses, secondary and associated losses caused during the extinguishing of fires by traditional fire-fighting techniques or materials cannot be ignored. The research on the fire extinguishing scheme that is environmentally friendly and can avoid secondary losses and associated losses is a scientific issue that needs to be focused on. The use of low–frequency acoustic field to extinguish small fire technology has the above advantages. In this paper, the response characteristics and evolution law of diffused flame forced combustion under the action of low-frequency acoustic field are systematically explored, and the critical conditions and mechanism of flame extinguishing are studied. This work provides more detailed and novel experimental results and theoretical analysis for the scientific research on low–frequency acoustic field fire suppression, and provides theoretical support for the development of clean and efficient fire suppression technology.

Firstly, the acoustic and fluid flow characteristics of the acoustic field fire extinguishing system were tested based on the acoustic and velocity measurement instruments. Acoustic time and frequency domain features were analyzed. Combining the experimental results and numerical simulations, the key velocity parameters of the near acoustic field were decoupled. The results show that the near–acoustic field contains two key parameters of acoustic wave and fluid flow. The effective acoustic pressure in the lateral center of the acoustic field is high, and the effective acoustic pressure at the edge is low. Effective acoustic pressure is positively related to frequency and power. The time–averaged flow and the periodic flow in the near acoustic field are decoupled, and the time–averaged lateral velocity and the time–averaged RMS velocity characterization of these two flows are proposed.

Secondly, the self–built experimental system was used to test the forced combustion characteristics of the flame, including the characteristics of flame morphology, flame temperature and flame periodic motion, using industrial high–speed camera, color camera, thermocouple and other instruments. Under the action of the low–frequency acoustic field, the flame tilts laterally and moves periodically, the flame body appears dark blue, the height of the flame decreases, and the width increases. The special behaviors of flames such as pinch–off, stretching, bifurcation and folding are identified. Based on the key parameters of the near–acoustic field, dimensionless numbers (Rea) and acoustic scales (ξ) are proposed to characterize the near–acoustic field. A global coupled model of the height, width and inclination of the diffusion flame is established considering the key parameters of the acoustic field, fuel flow, fuel type and fuel outlet diameter. As the frequency of the acoustic field increases from 30 Hz to 100 Hz, the temperature in the high–probability region of the flame increases from lower than the temperature of the free flame to higher than that, and the effect of the acoustic field on the temperature in the high–probability region of the flame changes from cooling to promoting combustion. The longitudinal and transverse frequencies of the diffusion flame under the action of the acoustic field exhibit a linear response (“phase–locking” and small variation of the dominant frequency) as well as a nonlinear response (low–pass filtering effect). A global model of dimensionless temperature and near–acoustic field dimensionless parameters in the high–probability region is established, and a general longitudinal frequency model of the flame under the action of the acoustic field is established.

Finally, by enhancing the power of the applied acoustic field, the critical parameters of flame extinguishing under near–acoustic field conditions are investigated. The morphological characteristics and parameters of near–limit extinction of diffusion flames are analyzed, and the behavior of near–limit extinction of the flame is characterized by enhanced forced combustion. The key parameter of flame extinguishing is the time–averaged RMS velocity, and the critical time–averaged RMS velocity is positively correlated with the fuel flow and the diameter of the burner outlet. A global mathematical model was constructed to correlate critical time–averaged RMS velocity with fire source parameters. According to the concepts of Da number and scalar dissipation rate, a criterion for acoustic field extinguishing diffusion flame was constructed. The concept of Da number was adopted to explain the chemical reaction and critical displacement mechanism of fire extinguishing under near–acoustic field conditions. Based on the constancy of the critical dissipation rate parameter for flame extinguishing, the dynamic and chemical reaction mechanism of flame extinguishing under near–acoustic field conditions is revealed.

参考文献:

[1] 邓军, 成晨阳, 康付如. 含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J]. 中国安全生产科学技术, 2021, 17(12): 5–10.

[2] Wang Z, Wang J. Experimental study on flame propagation over horizontal electrical wires under varying pressure [J]. International Journal of Thermal Sciences, 2020, 156: 106492.

[3] 罗振敏, 郝苗, 王磊, 等. 天然气场站泄漏事故后果模拟与风险评估[J]. 消防科学与技术, 2021, 40(03): 340–344.

[4] 肖旸, 王振平, 马砺, 等. 煤自燃指标气体与特征温度的对应关系研究[J]. 煤炭科学技术, 2008(06): 47–51.

[5] 文虎, 赵向涛, 王伟峰, 等. 导线起火和燃烧特性研究进展[J]. 消防科学与技术, 2021, 40(04): 471–476.

[6] 马砺, 黄霄, 高建勋, 等. 城市区域火灾事件分布规律及概率密度预测[J]. 西安科技大学学报, 2022, 42(02): 260–267.

[7] 张玉涛, 马婷, 林姣, 等. 2007–2016年全国重特大火灾事故分析及时空分布规律[J]. 西安科技大学学报, 2017, 37(06): 829–836.

[8] 邓军, 刘同双, 宋佳佳, 等. 自然老化作用对杨木热行为特征影响试验研究[J]. 中国安全科学学报, 2021, 31(12): 17–23.

[9] 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021, 49(09): 1–8.

[10] 袁亮, 张通, 张庆贺, 等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 2022, 47(06): 2131–2139.

[11] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业, 2021, 41(02): 171–182.

[12] 李俊峰, 李广. 碳中和—中国发展转型的机遇与挑战[J]. 环境与可持续发展, 2021, 46(01): 50–57.

[13] Zhao K, Li ST, Lin ZM, et al. Study on the global and spatial pulsation frequencies of rectangular syngas jet fire with different aspect ratios[J]. Fuel, 2022, 330(15): 125558.

[14] Hu LH. A review of physics and correlations of pool fire behaviour in wind and future challenges[J]. Fire Safety Journal, 2017, 91: 41–55.

[15] Cirrone D, Makarov D, Kuznetsov M, et al. Effect of heat transfer through the release pipe on simulations of cryogenic hydrogen jet fires and hazard distances[J]. International Journal of Hydrogen Energy, 2022, 47(50): 21596–21611.

[16] 曹璐. 建筑火灾后混凝土的性能研究及实用鉴定方法[D]. 华北水利水电大学, 2016.

[17] 李冉冉. 火灾事故中的环境污染控制[J]. 消防科学与技术, 2013, 32(9): 1048–1050.

[18] 杨雪梅. 火灾事故中的环境污染控制研究[J]. 环境与发展, 2014, 26(1): 57–58.

[19] 丁显孔. 灭火造成的环境污染及其对策[J]. 消防技术与产品信息, 2008, 6: 46–48.

[20] 冯振南. 消防部队灭火及应急救援中对环境污染问题的探析[J]. 科技创新与应用, 2015, 19: 299.

[21] 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172–22177.

[22] 肖旸, 徐凡, 张浩, 等. 离子液体[BMIM][BF_4]浸泡时间对煤微观活性结构的影响[J]. 西安科技大学学报, 2021, 41(03): 394–401.

[23] Carpes CQ, De Bortoli AL. Large eddy simulation of the acoustic of a premixed swirl flame[J]. Computers and Fluids, 2019, 182(30): 1–8.

[24] Yang Y, Fang YQ, Zhong L, et al. DMD analysis for velocity fields of a laminar premixed flame with external acoustic excitation[J]. Experimental Thermal and Fluid Science, 2021, 123(1): 110318.

[25] Sun YC, Sun MB, Zhu JJ, et al. PLIF measurements of instantaneous flame structures and curvature of an acoustically excited turbulent premixed flame[J]. Aerospace Science and Technology, 2020, 104: 105950.

[26] Hauser M, Lorenz M, Sattelmayer T. Influence of transversal acoustic excitation of the burner approach flow on the flame structure[J]. Journal of Engineering for Gas Turbines and Power, 2010, 133(4): 803−812.

[27] Wilk–Jakubowski JL, Stawczyk P, Ivanov S, et al. Control of acoustic extinguisher with deep neural networks for fire detection[J]. Elektronika ir Elektrotechnika 2022, 28: 52–59.

[28] 王译晨, 朱民. 火焰动力学及其对热声稳定性的影响[J]. 清华大学学报(自然科学版), 2022, 62(04): 785–793.

[29] Mcmanus KR, Poinsot T, Candel SM. A review of active control of combustion instabilities[J]. Progress in Energy and Combustion Science, 1993, 19(1): 1−29.

[30] Han X, Yang J, Mao J. LES investigation of two frequency effects on acoustically forced premixed flame[J]. Fuel, 2016, 185: 449–459.

[31] Weiss AD, Coenen W, Sanchez AL, et al. The acoustic response of Burke–Schumann counterflow flames[J]. Combustion and Flame, 2018, 192: 25–34.

[32] Worth NA, Dawson JR. Cinematographic OH–PLIF measurements of two interacting turbulent premixed flames with and without acoustic forcing[J]. Combustion and Flame, 2012, 159(3): 1109–1126.

[33] Steinbacher T, Albayrak A, Ghani A, et al. Consequences of flame geometry for the acoustic response of premixed flames[J]. Combustion and Flame, 2019, 199: 411–428.

[34] Kypraiou AM, Giusti A, Allison PM, et al. Dynamics of acoustically forced non–premixed flames close to blow–off[J]. Experimental Thermal and Fluid Science, 2018, 95: 81–87.

[35] Jiang DY, Yang WM, Chua KJ, et al. Analysis of entropy generation distribution in micro–combustors with baffles[J]. International Journal of Hydrogen Energy, 2014, 39(15): 8118–8125.

[36] Salauddin S, Nalajala P, Godavarth B. Sound fire extinguishers in space stations[C]. 2016 International Conference on Electrical, Electronics, and Optimization Techniques. Chennai(IN): IEEE, 2016, 3454–3457.

[37] Bae M, Yi EY. On a fire extinguisher using sound winds[J]. The Journal of the Acoustical Society of America, 2016, 140: 2958.

[38] 张玉涛, 林国铖, 史学强, 等. 横向声波扰动下的乙醇燃烧火焰结构和振荡特性[J]. 工程科学学报, 2022, 44(08): 1453–1461.

[39] Ahn M, Kim T, Yoon Y. Comparison of flame response characteristics between Non‐premixed and premixed flames under acoustic excitation[J]. Experimental Thermal and Fluid Science, 2022, 139(1): 110707.

[40] Whiteside G. Instant flame suppression phase II − Final report[R]. Massachusetts: Defense Advanced Research Projects Agency, 2008: 1–23.

[41] Xiong CY, Wang ZL, Huang XY. Acoustic flame extinction by the sound wave or speaker–induced wind? [J]. Fire Safety Journal, 2021, 126: 103479.

[42] 邹健, 杨昆, 王计威, 等. 低频声波灭火器的设计与实验研究[J]. 机械工程与自动化, 2019, 05: 24–25.

[43] Lyons KM. Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments[J]. Progress in Energy and Combustion Science, 2007, 33(2): 211–231.

[44] Rightley ML, Williams FA. Burning velocities of CO flames[J]. Combustion and Flame, 1997, 110(3): 285–297.

[45] Wu Y, Yu X, Wang ZC, et al. The flame mitigation effect of N2 and CO2 on the hydrogen jet fire[J]. Process Safety and Environmental Protection, 2022, 165: 658–670.

[46] 吴荻, 刘乃安, 谢小冬, 等. 坡度条件下湍流扩散火焰形态的实验研究[J]. 工程热物理学报, 2021, 42(08): 2150–2154.

[47] Fang X, Hu LH, Qiu A, et al. Cellular flame structures and thermal characteristics of axi–symmetric ceiling fires: An experimental study and scaling analysis[J]. Combustion and Flame, 2021, 230: 111442.

[48] Zhang C, Wu YM, Liu BJ, et al. Investigation of soot particles morphology and size distribution produced in a n–heptane/anisole laminar diffusion flame based on TEM images[J]. Combustion and Flame, 2022, 244: 112234.

[49] Pal P, Valorani M, Arias PG, et al. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations[J]. Proceedings of the Combustion Institute, 2016, 36(3): 3705–3716.

[50] Lapointe S, Bobbitt B, Blanquart G. Impact of chemistry models on flame–vortex interaction[J]. Proceedings of the Combustion Institute, 2015, 35(1): 1033–1040.

[51] Wang Q, Hu L, Zhang X, et al. Turbulent jet diffusion flame length evolution with cross flows in a sub–pressure atmosphere[J]. Energy Conversion and Management, 2015, 106: 703–708.

[52] Williams FA. Progress in knowledge of flamelet structure and extinction [J]. Progress in Energy and Combustion Science, 2000, 26(4–6): 657–682.

[53] Delichatsios MA. Transition from momentum to buoyancy–controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349–364.

[54] Fang J, Wang JW, Guan JF, et al. Momentum– and buoyancy–driven laminar methane diffusion flame shapes and radiation characteristics at sub–atmospheric pressures[J]. Fuel, 2016, 163: 295–303.

[55] Zeng Y, Fang J, Wang J, et al. Momentum–dominated methane jet flame at sub–atmospheric pressure[J]. Procedia Engineering, 2013, 62: 924–931.

[56] Imamura T, Hamada S, Mogi T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33: 3426–35.

[57] Palacios A, Muñoz M, Casal J. Jet Fires: An experimental study of the main geometrical features of the flame in subsonic and sonic regimes[J]. AIChE Journal, 2009, 55(1): 256–63.

[58] Schefer RW, Houf WG, Williams TC, et al. Characterization of high–pressure, under expanded hydrogen–jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081–93.

[59] Mogi T, Horiguchi S. Experimental study on the hazards of high–pressure hydrogen diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22: 45–51.

[60] Hawthorne WR, Weddell DS, Hottel HC. Mixing and combustion in turbulent gas jets[J]. Proceedings of Combustion Flame and Explosions Phenomena, 1949, 3: 266–88.

[61] Baron T. Reactions in turbulent free jets – The turbulent diffusion flame[J]. Chemical Engineering Progress, 1954, 50(2): 73–6.

[62] Palacios A, Casal J, Assessment of the shape of vertical jet fires[J]. Fuel, 2011, 90(2): 824–833.

[63] Chen J, Delichatsios M, Ding Z, et al. The effect of pressure on the characteristics of laminar jet diffusion flame: A similarity analysis and experimental study[J]. Experimental Thermal and Fluid Science, 2020, 116: 110127.

[64] Sun RB, Chen P, Li LY, et al. Experimental investigation of the combustion behavior of transformer oil jet flame[J]. ACS Omega, 2022, 26(7): 22969–22976.

[65] McCaffrey B. Purely buoyant diffusion flames: Some experimental results. Final report. Chemical and Physical Processes in Combustion[R]. The National Institute of Standards and Technology, Miami Beach, 1979.

[66] Zukoski EE, Kubota T, Cetegen B. Entrainment in fire plumes[J]. Fire Safety Journal, 1980, 3: 107–21.

[67] Bradley D, Gaskell PH, Gu XJ, et al. Jet flame heights, lift–off distances, and mean flame surface density for extensive ranges of fuels and flow rates[J]. Combustion and Flame, 2016, 164: 400–409.

[68] Heskestad G. Turbulent jet diffusion flames: consolidation of flame height data[J]. Combustion and Flame 1999, 118: 51–60.

[69] Chen J, Hu Y, Wang ZG, et al. Why are cooktop fires so hazardous? [J]. Fire Safety Journal, 2021, 120: 103070.

[70] Takagi K, Gotoda H, Miyano T, et al. Synchronization of two coupled turbulent fires[J]. Chaos, 2018, 28(4): 045116.

[71] Cetegen BM. A phenomenological model of near–field fire entrainment[J]. Fire Safety Journal, 1998, 31(4): 299–312.

[72] Cetegen BM, Dong Y. Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities[J]. Experiments in Fluids, 2000, 28(6): 546–558.

[73] Wang X, Cheng X, Lu LH, et al. Effect of burner diameter on structure and instability of turbulent premixed flames[J]. Fuel, 2020, 271: 117545.

[74] Zhang H, Xia X, Gao Y. Instability transition of a jet diffusion flame in quiescent environment[J]. Proceedings of the Combustion Institute, 2021, 38: 4971–4978.

[75] Byram GM, Nelson RM. The modeling of pulsating fires[J]. Fire Technology 1970, 6(2): 102–10.

[76] Zukoski EE, Cetegen BM, Kubota T. Visible structure of buoyant diffusion flames[J]. Symposium (International) on Combustion, 1984, 20: 361–6.

[77] Cetegen BM, Ahmed TA. Experiments on the periodic instability of buoyant plumes and pool fires[J]. Combustion and Flame, 1993, 93(1–2): 157–184.

[78] Malalasekera WMG, Versteeg HK, Gilchrist K. A review of research and an experimental study on the pulsation of buoyant diffusion flames and pool fires[J]. Fire and Materials, 1996, 20(6): 261–71.

[79] Hammis A, Yang JC, Kashiwagi T. An experimental investigation of the pulsation frequency of flames[J]. Symposium (International) on Combustion, 1992, 24(1): 1695–1702.

[80] 沈燕, 陶常法, 宗若雯, 等. 矩形喷口射流火火焰轴向温度研究[J]. 火灾科学, 2017, 26(02): 87–92.

[81] 曾怡. 低压下射流扩散火焰的燃烧特性与图像特征[D]. 中国科学技术大学, 2013.

[82] 王强. 不同环境条件下扩散射流火焰形态特征与推举、吹熄行为研究[D]. 中国科学技术大学, 2015.

[83] Quintiere JG. Fundamentals of fire phenomena[M]. England: John Wiley & Sons; 2006.

[84] Hu LH, Wang Q, Tang F, et al. Axial temperature profile in vertical buoyant turbulent jet fire in a reduced pressure atmosphere[J]. Fuel, 2013, 106: 779–786.

[85] Zhang XC, Hu L, Zhu W, et al. Axial temperature profile in buoyant plume of rectangular source fuel jet fire in normal–and a sub–atmospheric pressure[J]. Fuel, 2014, 134(15): 455–459.

[86] Tang F, Hu LH, Qiu ZW, et al. A global model of plume axial temperature profile transition from axisymmetric to line–source pool fires in normal and reduced pressures. Fuel, 2014, 15: 211–214.

[87] Li ZH, He YP, Zhang H, et al. Combustion characteristics of n–heptane and wood crib fires at different altitudes[J]. Proceedings of the Combustion Institute, 2009, 32: 2481–2488.

[88] Sevilla–Esparza CI, Wegener JL, Teshome S, et al. Droplet combustion in the presence of acoustic excitation[J]. Combustion and Flame, 2014, 161(6): 1604–1619.

[89] 龙相州, 苟小龙. 超声场中正庚烷液滴火焰抬升机制[J]. 燃烧科学与技术, 2020, 26(06): 558–566.

[90] Dattarajan S, Lutomirski A, Lobbia R, et al. Acoustic excitation of droplet combustion in microgravity and normal gravity[J]. Combustion and Flame, 2006, 144(1–2): 299–317.

[91] Pandey K, Basu S, Krishan B, et al. Dynamic self–tuning, flickering and shedding in buoyant droplet diffusion flames under acoustic excitation[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3141–3149.

[92] Bennewitz JW, Valentini D, Plascencia MA, et al. Periodic partial extinction in acoustically coupled fuel droplet combustion[J]. Combustion and Flame, 2018, 189: 46–61.

[93] Xiong CY, Liu YH, Fan HR, et al. Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source[J]. Scientific Reports, 2021, 11: 14402.

[94] 熊才溢, 刘彦辉, 许沧粟, 等. 浮力扩散火焰对低频外加声场的响应特性[J]. 工程热物理学报, 2022, 43(02): 553–558.

[95] Farhat SA, Kleiner D, Zhang Y. Jet diffusion flame characteristics in a loudspeaker–induced standing wave[J]. Combustion and Flame, 2005, 142(3): 317–323.

[96] Farhat SA, Ng WB, Zhang Y. Chemiluminescent emission measurement of a diffusion flame jet in a loudspeaker induced standing wave[J]. Fuel, 2005, 84(14–15): 1760–1767.

[97] Chen S, Zhao D, Li HKH, et al. Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube[J]. Applied Thermal Engineering, 2017, 112(5): 1070–1082.

[98] Sun YZ, Zhao D, Ni SL, et al. Entropy and flame transfer function analysis of a hydrogen–fueled diffusion flame in a longitudinal combustor[J]. Energy, 2020, 194(1): 116870.

[99] Jin X, Chen S, Li S, et al. Numerical study of dynamic response of different fuels jet diffusion flame to standing waves in a longitudinal tube[J]. Energy Procedia, 2017, 105: 4842–4847.

[100] Hou SS, Chung DH, Lin TH. Experimental and numerical investigation of jet flow and flames with acoustic modulation[J]. International Journal of Heat and Mass Transfer, 2015, 83: 562–574.

[101] Zheng LK, Ji SD, Zhang Y. Lifted and reattached behaviour of laminar premixed flame under external acoustic excitation[J]. Experimental Thermal and Fluid Science, 2018, 98: 683–692.

[102] Kim T, Ahn M, Hwang J, et al. The experimental investigation on the response of the Burke–Schumann flame to acoustic excitation[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1629–1636.

[103] Shi XQ, Zhang YT, Chen XK, et al. The response of an ethanol pool fire to transverse acoustic waves[J]. Fire Safety Journal, 2021, 125: 103416.

[104] 史学强, 张玉涛, 陈晓坤, 等. 横向声波扰动下池火火焰失稳特性[J]. 西南交通大学学报, 2022, 57(5): 1–10.

[105] 史学强, 张玉涛, 陈晓坤, 等. 低频声波激励下乙醇池火燃烧特性研究[J]. 工程热物理学报, 2022, 43(03): 830–839.

[106] Xiong CY, Liu YH, Xu CS, et al. Extinguishing the dripping flame by acoustic wave[J]. Fire Safety Journal, 2020: 103109.

[107] Okai K, Moriue O, Araki M, et al. Combustion of single droplets and droplet pairs in a vibrating field under microgravity[J]. Proceedings of the Combustion Institute, 2000, 28(1): 977–983.

[108] Kumagai S, Isoda H. Combustion of fuel droplets in a vibrating air field[J]. Symposium (International) on Combustion, 1955, 5(1): 129–132.

[109] Miglani A, Basu S, Kumar R. Suppression of instabilities in burning droplets using preferential acoustic perturbations[J]. Combustion and Flame, 2014, 161(12): 3181–3190.

[110] Friedman AN. Interaction of acoustic waves with a laminar line–flame[D], University of Maryland, 2016.

[111] Friedman AN, Stoliarov SI. Acoustic extinction of laminar line–flames[J]. Fire Safety Journal, 2017, 93: 102–113.

[112] Baillot F, Lespinasse F. Response of a laminar premixed V–flame to a high–frequency transverse acoustic field[J]. Combustion and Flame, 2014, 161(5): 1247–1267.

[113] Terhaar S, Paschereit B, Oberleithner K. Suppression and excitation of the processing vortex core by acoustic velocity fluctuations: An experimental and analytical study[J]. Combustion and Flame, 2016, 172: 234–251.

[114] 韩啸, 张弛, 韩猛, 等. 基于LES的分层旋流火焰流场结构与火焰响应研究[J]. 工程热物理学报, 2020, 41(06): 1535–1543.

[115] 唐豪杰, 高原, 朱民. 预混火焰传递函数的测量与分析[J]. 工程热物理学报, 2011, 32(01): 173–176.

[116] 王明晓, 邓凯, 管清强, 等. 不同当量比下氢气体积分数对甲烷–氢混合气预混火焰燃烧不稳定性的影响[J]. 航空动力学报, 2018, 33(12): 2851–2858.

[117] 王博涵, 孙潇峰, 姜磊, 等. 贫预混火焰动力学及稳定性分析[J]. 燃气轮机技术, 2019, 32(03): 34–40.

[118] Williams TC, Shaddix CR, Schefer RW, et al. The response of buoyant laminar diffusion flames to low–frequency forcing[J]. Combustion and Flame, 2007, 151(4): 676–684.

[119] Kimura I. Stability of laminar–jet flames[J]. Symposium on Combustion, 1965, 10(1): 1295–1300.

[120] Jiang X, Luo KH. Direct numerical simulation of the near field dynamics of a rectangular reactive plume[J]. International Journal of Heat and Fluid Flow, 2001, 22(6): 633–642.

[121] Luo KH. Instabilities, entrainment and mixing in reacting plumes[J]. European Journal of Mechanics – B/Fluids, 2004, 23(3): 443–460.

[122] Buckmaster J, Peters N. The infinite candle and its stability – a paradigm for flickering diffusion flames[J]. Symposium (International) on Combustion, 1988, 21(1): 1829–1836.

[123] Zhang Z, Zhao D, Li S H, et al. Transient energy growth of acoustic disturbances in triggering self–sustained thermoacoustic oscillations[J]. Energy, 2015, 82: 370–381.

[124] Jourdaine P, Mirat C, Caudal C, et al. Flame characteristics of a non–premixed oxy–fuel jet in a labscale furnace[J]. Energy, 2015, 81: 328–343.

[125] Zheng S, Zhang X, Wang T, et al. An experimental study on premixed laminar and turbulent combustion of synthesized coalbed methane[J]. Energy, 2015, 92: 355–364.

[126] Ducruix S, Durox D, Candel S. Theoretical and experimental determinations of the transfer function of a laminar premixed flame[J]. Proceedings of the Combustion Institute, 2000, 28: 765–773.

[127] Palies P, Durox D, Schuller T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158: 1980–1991.

[128] Karimi N. Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories[J]. Energy, 2014, 78: 490–500.

[129] Zhang Z, Zhao Z, Dobriyal R, et al. Theoretical and experimental investigation of thermoacoustics transfer function[J]. Applied Energy, 2015, 154: 131–142.

[130] Oh S, Shin Y, Kim Y. Stabilization effects of perforated plates on the combustion instability in a lean premixed combustor[J]. Applied Thermal Engineering, 2016, 107: 508–515.

[131] Wang HY, Law CK, Lieuwen T. Linear response of stretch–affected premixed flames to flow oscillations[J]. Combustion and Flame, 2009, 156(4): 889–895.

[132] Kim T, Lee JG, Quay BD, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J], Combustion and Flame, 2010, 157: 1731–1744.

[133] Kartheekeyan S, Chakravarthy SR. An experimental investigation of an acoustically excited laminar premixed flame[J]. Combustion and Flame, 2006, 146: 513–529.

[134] Huang HW, Wang Q, Tang HJ, et al. Characterisation of external acoustic excitation on diffusion flames using digital colour image processing[J]. Fuel, 2012, 94: 102–109.

[135] Wang Q, Huang HW, Tang HJ, et al. Nonlinear response of buoyant diffusion flame under acoustic excitation[J]. Fuel, 2013, 103: 364–372.

[136] Chen LW, Zhang Y. Experimental observation of the nonlinear coupling of flame flow and acoustic wave[J]. Flow Measurement and Instrumentation, 2015, 46: 12–17.

[137] Sim HS, Vargas A, Ahn DD, et al. Laminar microjet diffusion flame response to transverse acoustic excitation[J]. Combustion Science and Technology, 2020, 192(7): 1–28.

[138] Mckinney DJ, Dunn–Rankin D. Acoustically driven extinction in a droplet stream flame[J]. Combustion Science and Technology, 2000, 161(1): 27–48.

[139] Niegodajew P, Ukasiak K, Radomiak H, et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame, 2018, 194: 245–249.

[140] Niegodajew P, Gruszka K, Gnatowska R, et al. Application of acoustic oscillations in flame extinction in a presence of obstacle[J]. Journal of Physics Conference Series, 2018, 1101: 012023.

[141] Friedman AN, Danis PI, Fiola GJ, et al. Acoustically enhanced water mist suppression of heptane fueled flames[J]. Fire Technology, 2018, 54: 1829–1840.

[142] Huang YQ, Wang MH, Yang KB, et al. Role of acoustic wave on extinguishing flames coupling with water mist[J]. Case Studies in Thermal Engineering, 2022, 38: 102367.

[143] Gruszka K, Durajski AP, Niegodajew P, et al. Studies of acoustic wave propagation when facing obstacle[J]. Acta Physica Polonica A, 2020, 138(2): 280–282.

[144] Beisner E, Wiggins ND, Yue KB, et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology, 2015, 27: 141–144.

[145] Aliev AE, Mayo NK, Baughman RH, et al. Subwoofer and nanotube butterfly acoustic flame extinction[J]. Journal of Physics D: Applied Physics, 2017, 50: 29LT01.

[146] Stawczyk P, Wilk–Jakubowski JL. Non–invasive attempts to extinguish flames with the use of high–power acoustic extinguisher[J]. Open Engineering, 2021, 11(1): 349–355.

[147] Wilk–Jakubowski JL. Analysis of flame suppression capabilities using low–frequency acoustic waves and frequency sweeping techniques[J]. Symmetry, 2021, 13: 1299.

[148] Taspinar YS, Koklu M, Altin M. Acoustic–driven airflow flame extinguishing system design and analysis of capabilities of low frequency in different fuels[J]. Fire Technology, 2022, 58: 1579–1597.

[149] Koklu M, Taspinar YS. Determining the extinguishing status of fuel flames with sound wave by machine learning methods[J]. IEEE Access, 2021, 99: 1–10.

[150] 孔祥晓. 不同喷射方向湍流射流火焰撞壁行为特征研究[D]. 中国科学技术大学, 2021.

[151] 陈庆, 魏旭, 陈光, 等. 受限空间射流火形成和发展影响因素研究[J]. 中国安全科学学报, 2020, 30(07): 35–40.

[152] 弓亮, 靳开颜, 杨胜男, 等. 低温氢泄漏及射流火传播特性研究现状[J]. 消防科学与技术, 2021, 40(07): 1056–1060.

[153] 仲冰, 张学秀, 张博, 等. 我国天然气掺氢产业发展研究[J]. 中国工程科学, 2022, 24(03): 100–107.

[154] 曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(06): 1461–1478.

[155] 邱玥, 周苏洋, 顾伟, 等. “碳达峰、碳中和”目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(04): 1301–1321.

[156] Lei J, Huang PC, Liu NA, et al. On the flame width of turbulent fire whirls[J]. Combustion and Flame, 2022, 244: 112285.

[157] Xu T, Lei P. Experimental study on flame height and heat release rate estimation of diesel–wetted wood powder fire[J]. Case Studies in Thermal Engineering, 2022, 33: 101906.

[158] Shinohara M. Vortex strength and size of fire whirls without flames around a long narrow fire source[J]. Fire Safety Journal, 2022, 129: 103561.

[159] 郝玉山. 采样频率的上限[J]. 南方电网技术, 2013, 7(01): 28–31.

[160] 许丞. 超奈奎斯特速率光传输系统的时频域压缩调制与接收处理技术研究[D]. 北京邮电大学, 2019.

[161] Zhao JL, Zhu HQ, Huang H, et al. Experimental study on the liquid layer spread and burning behaviors of continuous heptane spill fires[J]. Process Safety and Environmental Protection, 2019, 122: 320–327.

[162] Sung K, Chen J, Bundy M, et al. The characteristics of a 1 m methanol pool fire[J]. Fire Safety Journal, 2021, 120: 103121.

[163] Bi YB, Chen J, Chen X, et al. Experimental investigation of nitrogen addition effect on combustion characteristics of buoyant turbulent diffusion flame[J]. Fuel, 2019, 240 (15): 237–243.

[164] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2012.

[165] 郑保宾. 扬声器振膜的谐波失真[D]. 浙江师范大学, 2015.

[166] 山本武夫. 扬声器系统[M]. 王以真, 吴光威译, 张绍高校. 北京:国防工业出版社, 1984.

[167] Zhang YT, Shi XQ, Li YQ, et al. Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients[J]. Energy, 2020, 197(15): 117228.

[168] Uzay BN, Yıldırım E, Turkoglu H. Numerical study on effects of computational domain length on flow field in standing wave thermoacoustic couple[J]. Cryogenics, 2019, 98: 139–147.

[169] Shi XQ, Zhang YT, Chen XK, et al. Numerical simulation on response characteristics of coal ignition under the disturbance of fluctuating heat[J]. Combustion and Flame, 2022, 237: 111870.

[170] Zhao M, Fan AW. Buoyancy effects on hydrogen diffusion flames confined in a small tube[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19926–19935.

[171] Rengel B, Àgueda A, Pastor, E, et al. Experimental and computational analysis of vertical jet fires of methane in normal and sub–atmospheric pressures[J]. Fuel, 2020, 256(1): 116878.

[172] Hariharan V, Mishra DP. Entrainment studies in inverse jet flame port burner[J]. Combustion and Flame, 2020, 216, 338–353.

[173] Yip A, Haelssig JB, Pegg MJ. Simulating fire dynamics in multicomponent pool fires[J]. Fire Safety Journal, 2021, 125: 103402.

[174] Wang Z, Yu L, Ji J. Numerical investigation on the asymmetric flow characteristics of two propane fires of unequal heat release rate in open space[J]. Fire Technology, 2021, 57: 2181–2203.

[175] Stewart JR, Phylaktou HN, Andrews GE, et al. Evaluation of CFD simulations of transient pool fire burning rates[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104495.

[176] Rogoziński K, Nowak G. Numerical investigation of dual thermoacoustic engine[J]. Energy Conversion and Management, 2020, 203(1): 112231.

[177] Chen G, Wang YF, Tang LH, et al. Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine[J]. Applied Energy, 2020, 276(15): 115458.

[178] Jin T, Huang JL, Feng Y, et al. Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components[J]. Energy, 2015, 93(15): 828–853.

[179] Gu C, Zhou Y, Wang JJ, et al. CFD analysis of nonlinear processes in pulse tube refrigerators: Streaming induced by vortices[J]. International Journal of Heat and Mass Transfer, 2012, 55(25–26): 7410–7418.

[180] 杨尚荣, 王勇, 张锋, 等. 同轴离心式喷嘴燃烧实验中的间歇性压力振荡[J]. 工程热物理学报, 2022, 43(07): 1986–1991.

[181] 赵晓尧, 石保禄, 李博, 等. 高氧气浓度甲烷不稳定燃烧实验研究[J]. 工程热物理学报, 2020, 41(02): 474–481.

[182] 余辉, 雷佼, 邓文扬, 等. 基于三维图像分析的浮力扩散火焰几何与辐射特性研究[J]. 火灾科学, 2021, 30(03): 125–133.

[183] Li YC, Ko Y, Lee W. RGB image–based hybrid model for automatic prediction of flashover in compartment fires[J]. Fire Safety Journal, 2022, 132: 103629.

[184] Ren F, Hu LH, Zhang XL, et al. Experimental study of transitional behavior of fully developed under–ventilated compartment fire and associated facade flame height evolution[J]. Combustion and Flame, 2019, 208: 235–245.

[185] Zeng D, Xiong G, Agarwal G, et al. Experimental study of flame heat transfer in a vertical turbulent wall fire[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4477–4484.

[186] Muñoz M, Arnaldos J, Casal J, et al. Analysis of the geometric and radiative characteristics of hydrocarbon pool fires[J]. Combustion and Flame, 2004, 139(3): 263–277.

[187] Huang XJ, Wang JK, Zhu H, et al. Flame–splitting mechanism of buoyancy–controlled diffusion plumes generated by a rectangular fire source attached to a sidewall[J]. International Journal of Thermal Sciences, 2022, 179: 107670.

[188] Wang JW, Fang J, Guan JF, et al. Effect of crossflow on the air entrainment of propane jet diffusion flames and a modified Froude number[J]. Fuel, 2018, 233(1): 454–460.

[189] Kalghatgi GT. Blow–out stability of gaseous jet diffusion flames. Part II: effect of cross wind[J]. Combustion Science and Technology, 1981, 26: 5–6.

[190] Magina N, Acharya V, Lieuwen T. Forced response of laminar non–premixed jet flames[J]. Progress in Energy and Combustion Science, 2019, 70: 89–118.

[191] Li ZJ, Zhang PH. Fire behaviors of fuels with different sootiness levels in hot and humid conditions[J]. Process Safety and Environmental Protection, 2021, 146: 350–359.

[192] Salvagni RG, SperbIndrusiak ML, Centeno FR. Biodiesel oil pool fire under air crossflow conditions: Burning rate, flame geometric parameters and temperatures[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119164.

[193] Zhou KB, Wang XZ. Thermal radiation modelling of pool fire with consideration on the nonuniform temperature in flame volume[J]. International Journal of Thermal Sciences, 2019, 138: 12–23.

[194] 杜伟, 程海涛, 邹彪,等. 基于点状火源的秸秆火焰蔓延及燃烧特性[J]. 清华大学学报(自然科学版), 2022, 62(06): 1088–1093.

[195] 刘芹, 贾琦晖, 何沛祥, 等. 多火源气体射流火动力学特性研究[J]. 合肥工业大学学报(自然科学版), 2021, 44(08): 1094–1099.

[196] 李红钢, 李强, 熊杰, 等.侧向喷射条件下细水雾扑灭水平表面流淌火研究[J]. 消防科学与技术, 2021, 40(11): 1631–1635.

[197] 林树宝. 外界风下低动量湍流射流扩散火焰图像特征与燃烧特性[D]. 中国科学技术大学, 2015.

[198] 王亮, 苏石川, 郭晨宇, 等. 基于水面边界的小尺度柴油池火焰高度及其周期振荡频率特性研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(06): 27–32.

[199] Tang W, Gorham DJ, Finney MA, et al. An experimental study on the intermittent extension of flames in wind–driven fires[J]. Fire Safety Journal, 2017, 91: 742–748.

[200] Abe H, Ito A, Torikai H. Effect of gravity on puffing phenomenon of liquid pool fires[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2581–2587.

[201] Moreno–Boza D, Coenen W, Carpio J, et al. On the critical conditions for pool–fire puffing[J]. Combustion and Flame, 2018, 192: 426–438.

[202] Katta VR, Roquemore WM. Role of inner and outer structures in transitional jet diffusion flame[J]. Combustion and Flame, 1993, 92(3): 279–282.

[203] Lingens A, Reeker M, Schreiber M. Instability of buoyant diffusion flames[J]. Experiments in Fluids, 1996, 20: 241–248.

[204] Balachandran R, Ayoola BO, Kaminski CF, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143(1–2): 37–55

[205] Birbaud AL, Durox D, Ducruix S, et al. Dynamics of confined premixed flames submitted to upstream acoustic modulations[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1257–1265.

[206] 王江涛, 梅笑寒, 王倩. 横向声波扰动下甲烷射流扩散火焰的频率响应[J]. 中国科技论文, 2019, 14(08): 879–883.

[207] Fujisawa N, Iwasaki K, Fujisawa K, et al. Flow visualization study of a diffusion flame under acoustic excitation[J]. Fuel, 2019, 251(1): 506–513.

[208] Xiong CY, Liu YH, Huang XY, et al. Acoustical extinction of flame on moving firebrand for the fire protection in Wildland–Urban interface[J]. Fire Technology, 2020, 57: 1365–1380.

[209] 邹俊, 杨协和, 张扬, 等. 小尺度湍流对近极限非预混火焰熄灭极限的影响[J]. 燃烧科学与技术, 2022, 28(02): 190–197.

[210] 林少润, 高健, 黄鑫炎. 外加辐射下木材的蓝色近极限火焰及熄火极限[J]. 工程热物理学报, 2021, 42(07): 1901–1905.

[211] 王双峰, 朱凤, 卢占斌. 热厚材料表面的近极限火焰传播特性[J]. 燃烧科学与技术, 2016, 22(05): 402–407.

[212] Fouchera F, Burnel S, Mounaı̈m–Rousselle C. et al. Flame wall interaction: effect of stretch[J]. Experimental Thermal and Fluid Science, 2003, 27(4): 431–437.

[213] Sankaran V, Jiang H, Colket M, et al. Flame extinction model for fire suppression simulations[C]//. 9th U. S. National Combustion Meeting. 2015: 17–20.

[214] McGrattan K, McDermott R, Floyd J, et al. Computational fluid dynamics modelling of fire[J]. International Journal of Computational Fluid Dynamics, 2012, 26(6–8): 349–361.

[215] Duthinh D, McGrattan K, Khaskia A, Recent advances in fire–structure analysis[J]. Fire Safety Journal, 2008, 43(2): 161–167.

[216] Broadwell JE, Dahm WJA, Mungal MG. Blowout of turbulent diffusion flames[J]. Symposium (International) on Combustion, 1985, 20(1): 303–310.

[217] Wang Q, Hu LH, Yoon SH, et al. Blow–out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub–atmospheric pressures[J]. Combustion and Flame, 2015, 162(10): 3562–3568.

[218] Kalghatgi GT. Blow–out stability of gaseous jet diffusion flames. Part I: in still air[J]. Combustion Science and Technology, 1981, 26: 5–6.

[219] Quintiere JG. Fire behavior in building compartments[J]. Proceedings of the Combustion Institute, 2002, 29(1): 181–193.

[220] Yang JL, Rein G, Chen HX, et al. Smoldering propensity in upholstered furniture: Effects of mock–up configuration and foam thickness [J]. Applied Thermal Engineering, 2020, 181(25): 115873.

[221] Wang TY, Wang ZG, Tan JG, et al. Combustion characteristics of a confined turbulent jet flame[J]. Fuel, 2022, 323(1): 124228.

[222] Hirano T. Combustion science for safety[J]. Proceedings of the Combustion Institute, 2002, 29(1): 167–180.

[223] Li LM, Liu B, Zheng W, et al. Investigation and numerical reconstruction of a full–scale electric bicycle fire experiment in high–rise residential building[J]. Case Studies in Thermal Engineering, 2022, 37: 102304.

[224] Peters N. Laminar diffusion flamelet models in non–premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319–339.

中图分类号:

 TD752.2    

开放日期:

 2027-01-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式