论文中文题名: |
深部扰动煤岩灾变响应机理与调控研究
|
姓名: |
张帅
|
学号: |
18103077006
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
0819
|
学科名称: |
工学 - 矿业工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
矿业工程
|
研究方向: |
煤岩动力灾害防控
|
第一导师姓名: |
来兴平
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-27
|
论文答辩日期: |
2023-05-30
|
论文外文题名: |
Research on Mechanism and Control of Catastrophic Response in Deeply Disturbed Coal and Rock Masses
|
论文中文关键词: |
动力灾害 ; 关键激发块 ; 能量演化 ; 链式致灾 ; 改性调控
|
论文外文关键词: |
Dynamic disaster ; Key evoked block ; Energy evolution ; Chain disaster ; Modification regulation
|
论文中文摘要: |
︿
随着我国矿产资源开采深度与开采强度的增长,深部煤岩体动力学失稳现象显著且频发,严重困扰了深部工程建设总体进度。深部岩石力学理论研究进入新常态,出现了与浅部迥异的采动煤岩深部特殊力学响应行为。面对工程实践倒逼冗旧理论的现状,亟需开展深部煤岩动力学失稳机理研究。 本文针对深部采动煤岩体诱发冲击地压问题,围绕深部扰动煤岩灾变响应机理与调控目标,采用理论研究分析、现场实际探测、室内试验研究、数值计算模拟以及现场工程应用等综合手段,利用矿业工程、安全科学与工程和地质工程等多学科交叉与融合方法,从深部煤岩体力学模型构建和受力模式分析,研究煤岩动力系统能量演化特征。同时,结合常规防冲卸压手段,利用岩石力学试验,研究不同改性措施采动煤岩体能量调控规律。进而,利用现场原位试验和工程实践检验相结合的方法,对深部煤岩体冲击地压能量调控机理开展研究工作,为后续冲击地压调控技术应用提供保障。基于此,综合开展深部扰动煤岩灾变响应机理与调控研究工作。本文主要创新研究成果如下: (1)构建了以全过程应力-应变曲线为纽带的采动煤岩体荷载转移及结构形成模型,明确了冲击地压诱发共性机制。围绕支承压力演化过程,分析采动煤岩体应力转移与损伤演化规律,据此反演采动煤岩体荷载转移过程以及结构形成范围,为共性机制分析过程中采动煤岩体静力学环境溯源提供了理论依据。 (2)建立了考虑采动应力演化特征的深部煤岩体动态灾变破损范围动态发展分析模式,分析了围压对承载煤岩样损伤演化影响规律。而损伤分布特征直接影响了结构的形成,引入特征强度,精确刻画不同围压机制下煤岩体特征强度演化规律,分析结构的差异性特征,为共性机制分析过程中采动煤岩体静力学结构追踪提供了参考信息。 (3)揭示了深部煤岩体扰动作用临空面区域不同破损块度煤岩链式致灾机理,明确了“关键激发块”概念。设计了低频扰动应力路径。将恒定频率的正弦应力波作用在临空面区域不同破损块度的煤岩体储能系统中,分析不同破损块度的煤岩体扰动力学响应差异性,并详细刻画出冲击地压链式致灾全过程,从理论层面解释了考虑工程扰动背景下的动力灾变链式响应机理。 (4)研发了深部煤岩动态灾变冲击地压改性能量调控技术,阐述了工程视角下冲击地压预警与防治的理论依据。而不同的改性调控措施,能对能量演化过程中的序列转化起到了很好的干预作用。因此,充分利用自身物理属性,总结最佳适用条件,形成综合防控技术,并不断优化以及互馈,最终达到有效防控冲击地压的目的。
﹀
|
论文外文摘要: |
︿
With the growth of mining depth and intensity of mineral resources in China, deep coal rock body dynamics instability phenomenon is significant and frequent, which seriously disturbs the overall progress of deep engineering construction. The study of deep rock mechanics theory has entered a new normal, and special mechanical response behaviors of deep mining coal rocks have emerged which are very different from those of shallow parts. In the face of the current situation that engineering practice forces the redundant theory, there is an urgent need to carry out the research of deep coal rock dynamics destabilization mechanism.
In this thesis, we use theoretical research and analysis, actual field detection, indoor experimental research and field engineering application, etc., and use the multidisciplinary intersection and integration methods of mining engineering, safety science and engineering and geological engineering to construct the mechanical model and analyze the force pattern of deep coal rock body. The energy evolution characteristics of coal-rock dynamic system are studied. At the same time, the energy regulation law of coal rock body mined by different modification measures is studied by using rock mechanics test in combination with conventional anti-punching and pressure relief means. In addition, using the combination of in-situ test and engineering practice test, the study on the energy regulation mechanism of deep coal rock body coal burst is carried out to provide a guarantee for the application of subsequent adaptive coal burst regulation technology. Based on this, the research work on deep disturbance coal rock disaster response mechanism and regulation is carried out comprehensively. The main innovative research results of this paper are as follows.
(1) A load transfer and structure formation model of mining coal rock body linked with the whole process stress-strain curve is constructed, and the common mechanism of coal burst induced is clarified. Around the process of support pressure evolution, the stress transfer and damage evolution law of the mined coal body is analyzed, and the load transfer process and structure formation range of the mined coal body are inferred accordingly, which provides a theoretical basis for the tracing of the hydrostatic environment of the mined coal body during the analysis of the common mechanism.
(2) The analysis model of dynamic development of breakage range of deep disturbed coal rock body considering the characteristics of mining stress evolution is established.
The influence law of the surrounding pressure on the damage evolution of the bearing coal rock sample is analyzed. The damage distribution characteristics directly affect the structure formation, and the characteristic strength is introduced to accurately portray the characteristic strength evolution law of the coal rock body under different enclosing pressure mechanisms, analyze the differential characteristics of the structure, and provide reference information for the static structure tracing of the mined coal rock body in the process of common mechanism analysis.
(3) The disaster-causing mechanism of coal-rock chain with different breakage block degrees in the region of the deep coal-rock body perturbation surface is revealed, and the low-frequency perturbation stress path is designed. A constant-frequency sinusoidal stress wave is applied to the energy storage system of coal rock bodies with different degrees of damage in the critical surface area, and the difference of the perturbation response of coal rock bodies with different degrees of damage is analyzed, and the whole process of coal burst chain disaster generation is portrayed in detail, which explains the dynamic disaster chain response mechanism under the background of engineering perturbation from the theoretical level.
(4) The adaptive coal burst modification energy control technology for deep disturbed coal rocks is developed, and the theoretical basis of coal burst warning and prevention from the engineering perspective is explained. And different modification and regulation measures can play a good intervention role in the sequence transformation of energy evolution process. Therefore, the full use of its own physical properties, summarize the best applicable conditions, the formation of adaptive prevention and control technology, and continuous optimization as well as mutual feedback, and finally achieve the purpose of effective prevention and control of coal burst.
﹀
|
参考文献: |
︿
[1] 谢和平,任世华,谢亚辰,焦小淼.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(07):2197-2211. [2] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(07):1949-1960. [3] Jia Z, Lin B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective[J]. Energy, 2021, 233: 121179. [4] Rao C, Zhang Y, Wen J, et al. Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model[J]. Energy, 2022: 125955. [5] 卢义玉,黄杉,葛兆龙,周哲,刘文川,管娅蕊.我国煤矿水射流卸压增透技术进展与战略思考[J].煤炭学报,2022,47(09):3189-3211. [6] 黄中伟,李国富,杨睿月,李根生.我国煤层气开发技术现状与发展趋势[J].煤炭学报,2022,47(09):3212-3238. [7] 黄炳香,赵兴龙,余斌,贺桂成,岳中文,杨成祥,王长申,孟庆彬,杨玉贵,刘江峰,冯秀娟,陈大勇,邢岳堃,朱卫兵,段晓恒,鞠金峰.煤与共伴生战略性金属矿产协调开采理论与技术构想[J].煤炭学报,2022,47(07):2516-2533. [8] 谢和平,刘吉峰,高明忠,王领,文巧,刘飞,吴江.深地医学研究新进展[J].煤炭学报,2022,47(06):2140-2149. [9] 代世峰,刘池洋,赵蕾,刘晶晶,王西勃,任德贻.煤系中战略性金属矿产资源:意义和挑战[J].煤炭学报,2022,47(05):1743-1749. [10] 刘长友,张宁波,郭凤岐,安森,陈宝宝.特厚煤层综放煤-矸-岩放落流动的时序规律及识别方法[J].煤炭学报,2022,47(01):137-151. [11] 师庆民,米奕臣,王双明,孙强,王生全,寇丙洋.富油煤热解流体滞留特征及其机制[J].煤炭学报,2022,47(03):1329-1337. [12] 高明忠,陈领,凡东,杨明庆,刘程,李佳南,赵乐,田东庄,李聪,王瑞泽,谢和平.深部煤矿原位保压保瓦斯取芯原理与技术探索[J].煤炭学报,2021,46(03):885-897. [13] 王恩元,张国锐,张超林,李忠辉.我国煤与瓦斯突出防治理论技术研究进展与展望[J].煤炭学报,2022,47(01):297-322. [14] 秦勇,申建,史锐.中国煤系气大产业建设战略价值与战略选择[J].煤炭学报,2022,47(01):371-387. [15] 张宁波,刘长友,陈宝宝,朱传奇,周劲锋.极近距离煤层下位厚煤层综放煤矸放落流动规律及放煤工艺参数确定[J].采矿与安全工程学报,2021,38(05):911-918. [16] 谢和平,周宏伟,薛东杰,高峰.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(08):1391-1397. [17] 谢和平,侯正猛,高峰,周雷,高亚楠.煤矿井下抽水蓄能发电新技术:原理、现状及展望[J].煤炭学报,2015,40(05):965-972. [18] 王德明,邵振鲁,朱云飞.煤矿热动力重大灾害中的几个科学问题[J].煤炭学报,2021,46(01):57-64. [19] 谢和平,高明忠,高峰,张茹,鞠杨,徐恒,王勇威.关停矿井转型升级战略构想与关键技术[J].煤炭学报,2017,42(06):1355-1365. [20] 谢和平,高明忠,刘见中,周宏伟,张瑞新,陈佩佩,刘志强,张安林.煤矿地下空间容量估算及开发利用研究[J].煤炭学报,2018,43(06):1487-1503. [21] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J]岩石力学与工程学报,2005,24(16):1-10 [22] 康红普,张晓,王东攀,田锦州,伊钟玉,蒋威.无煤柱开采围岩控制技术及应用[J].煤炭学报,2022,47(01):16-44. [23] 袁亮.深部采动响应与灾害防控研究进展[J].煤炭学报,2021,46(03):716-725. [24] 谢和平,鞠杨,高明忠,高峰,刘见中,任怀伟,葛世荣.煤炭深部原位流态化开采的理论与技术体系[J].煤炭学报,2018,43(05):1210-1219. [25] 康红普,姜鹏飞,杨建威,王志根,杨景贺,刘庆波,吴拥政,李文洲,高富强,姜志云,李建忠.煤矿千米深井巷道松软煤体高压锚注-喷浆协同控制技术[J].煤炭学报,2021,46(03):747-762. [26] 袁亮,杨科.再论废弃矿井利用面临的科学问题与对策[J].煤炭学报,2021,46(01):16-24. [27] 窦林名,田鑫元,曹安业,巩思园,贺虎,何江,蔡武,李许伟.我国煤矿冲击地压防治现状与难题[J].煤炭学报,2022,47(01):152-171. [28] 潘一山,代连朋,李国臻,李忠华.煤矿冲击地压与冒顶复合灾害研究[J].煤炭学报,2021,46(01):112-122. [29] 谢和平,高峰,鞠杨,高明忠,张茹,高亚楠,刘建峰,谢凌志.深部开采的定量界定与分析[J].煤炭学报,2015,40(01):1-10. [30] 谢和平,周宏伟,薛东杰,王宏伟,张茹,高峰.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(04):535-542. [31] 朱建波,马斌文,谢和平,高峰,周宏伟,周昌台,郑福润.煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J].煤炭学报,2022,47(09):3396-3409. [32] 荣海,于世棋,张宏伟,梁冰,韩军,兰天伟,杨振华.基于煤岩动力系统能量的冲击地压矿井临界深度判别[J].煤炭学报,2021,46(04):1263-1270. [33] 鞠杨,任张瑜,郑江韬,毛灵涛,王凯,周宏伟,谢和平.岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J].煤炭学报,2022,47(01):210-232. [34] 谢和平,高明忠,付成行,鲁义强,杨明庆,胡建军,杨本高.深部不同深度岩石脆延转化力学行为研究[J].煤炭学报,2021,46(03):701-715. [35] 谢和平,张泽天,高峰,张茹,高明忠,刘建锋.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J].煤炭学报,2016,41(10):2405-2417. [36] 潘一山.煤矿冲击地压扰动响应失稳理论及应用[J].煤炭学报,2018,43(08):2091-2098. [37] 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):1-6. [38] 潘俊锋,齐庆新,刘少虹,等.我国煤炭深部开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(1):111-121. [39] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172. [40] 姜耀东,赵毅鑫.我国煤矿冲击地压的研究现状:机制、预警与控制[J].岩石力学与工程学报,2015,34(11):2188-2204. [41] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020,45(5):1567-1584. [42] 冯夏庭,肖亚勋,丰光亮,等.岩爆孕育过程研究[J].岩石力学与工程学报,2019,38(4):649-673. [43] JIANG Y D, ZHAO Y X, WANG H W, et al. A review of mechanism and prevention technologies of coal bumps in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1):180-194. [44] 王宏伟,姜耀东,邓代新,等.义马煤田复杂地质赋存条件下冲击地压诱因研究[J].岩石力学与工程学报,2017,36(增2):4085-4092. [45] 卢志国,鞠文君,王浩,等.硬煤冲击倾向各向异性特征及破坏模式试验研究[J].岩石力学与工程学报,2019,38(4):757-768. [46] 来兴平,代晶晶,李超.急倾斜煤层开采覆岩联动致灾特征分析[J].煤炭学报,2020,45(1):122–130. [47] 来兴平,杨毅然,王宁波,等.急斜煤岩体动力失稳时空演化特征综合分析[J].岩石力学与工程学报,2018,37(3):583–592. [48] 崔峰,贾冲,来兴平,等.近距离强冲击倾向性煤层上行开采覆岩结构演化特征及其稳定性研究[J]. 岩石力学与工程学报,2020,39(3):507–521. [49] 曹文卓,李夕兵,周子龙,叶海旺,吴浩.高应力硬岩开挖扰动的能量耗散规律[J].中南大学学报(自然科学版),2014,45(08):2759-2767. [50] 王家臣,王兆会.综放开采顶煤裂隙扩展的应力驱动机制[J]. 煤炭学报,2018,43(9):2376-2388. [51] 庞义辉,王国法,李冰冰.深部采场覆岩应力路径效应与失稳过程分析[J].岩石力学与工程学报:1-13 [52] 郭依宝,周宏伟,荣腾龙,王路军,钟江城,任伟光,陈吉.采动应力路径下深部煤体扰动特征[J].煤炭学报,2018,43(11):3072-3079. [53] 高明忠,刘军军,林文明,邓光迪,彭高友,李聪,何志强. 特厚煤层超前采动原位应力演化规律研究[J].煤炭科学技术,2020,48(2):28-35. [54] 蒋长宝,俞欢,段敏克, 李广治.基于加卸载速度影响下的含瓦斯煤力学及渗透特性实验研究[J].采矿与安全工程学报,2017,34(6):1216-1222. [55] 王蒙,朱哲明,冯若琪.真三轴加卸载条件下巷道周边裂隙岩体变形破坏试验研究[J].煤炭学报,2015,40(2):278-285. [56] 李兆霖. 真三轴条件下岩石加卸载力学特性及破坏机理研究[D].中国矿业大学,2019. [57] LI Diyuan,SUN Zhi,XIE Tao,XibingLi,P.G.Ranjith. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths[J]. Engineering Geology,2017,228(13):270-281. [58] GONG Fengqiang,SI Xuefeng,LI Xibing,Wang Shanyong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions[J]. Rock Mechanics and Rock Engineering. 2019,52,1459-1474. [59] 陈卫忠,吕森鹏,郭小红,乔春江.脆性岩石卸围压试验与岩爆机理研究[J].岩土工程学报,2010,32(6):963-969. [60] 李夕兵,陈正红,曹文卓,陶明,周健. 不同卸荷速率下大理岩破裂时效特性与机理研究[J].岩土工程学报,2017,39(9):433-444. [61] 肖建清,冯夏庭,丁德馨,蒋复量. 常幅循环荷载作用下岩石的滞后及阻尼效应研究[J].岩石力学与工程学报,2010,29(8): 1677-1683. [62] 邓华锋,胡玉,李建林,王哲,张小景,张恒宾.循环荷载的频率和幅值对砂岩动力特性的影响[J].岩土力学,2017,38(12):3402-3409+3418. [63] 刘建锋,翟俨伟,裴建良,寇清剑,张祺,张丹丹.不同频率循环荷载下大理岩动力学特性试验研究[J].河南理工大学学报(自然科学版),2014,33(04):432-436. [64] 薛东杰,周宏伟,王子辉,任伟光,张淼,刘亚群. 不同加载速率下煤岩采动力学响应及破坏机制[J]. 煤炭学报,2016,41(3):595-602. [65] MCKAVANAGH B, STACEY F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies[J]. Physics of the Earth and Planetary Interiors,1974,8(3):246-250. [66] 李夕兵,左宇军,马春德. 中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2006,25(5):865-874. [67] 张平,李宁,贺若兰,徐建光. 不同应变速率下非贯通裂隙介质的力学特性研究[J].岩土工程学报,2006,28(6):750-755. [68] Zi-long ZHOU, Xin CAI, Yuan ZHAO, Lu CHEN, Cheng XIONG, Xi-bing LI. Strengthcharacteristics of dry and saturated rock at different strain rates[J]. Transactions of Nonferrous Metals Society of China,2016,26(7):1919-1925. [69] HOEK E,MARTIN C D. Fracture initiation and propagation in intact rock-A review[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(4):287-300. [70] 张国军,张勇. 基于莫尔-库仑准则的岩石材料加(卸)载分区破坏特征[J] 煤炭学报,2019,44(4):1049-1058. [71] 苗胜军,樊少武,蔡美峰,陈长臻.基于加卸载响应比的载荷岩石动力学特征试验研究[J].煤炭学报,2009,34(3):329-333. [72] 邓华峰,胡亚运,李建林,肖志勇,周美玲,胡玉.考虑滞后效应的岩石加卸载响应比试验研究[J].岩石力学与工程学报,2015,34(S1):2915-2921. [73] 谢和平,李存宝,高明忠,等.深部原位岩石力学构想与初步探索[J].岩石力学与工程学报,2021,40(02):217-232. [74] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178. 178. [75] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019, 44(05):1283-1305. [76] FAORO I,NIEMEIJER A,MAROUE C,et al. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock[J]. Journal of Geophysical Research: Earth Surface, 2009,114(B01201):1-10. https://doi.org/10.1029/2007JB005372. [77] 赵阳升.岩体力学发展的一些回顾与若干未解之百年问题[J].岩石力学与工程学报,2021,40(07):1297-1336. [78] 夏同强,王有湃,周福宝,等.煤岩体应力-渗流-温度多过程耦合试验系统[J].中国矿业大学学报,2021,50(02):205-213. [79] 马啸,马东东,胡大伟,等.实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报,2019,38(8):1605-1614. [80] GOTO R, WATANABE N, SAKAGUCHI K, et al. Creating cloud‑fracture network by flow-induced microfracturing in superhot geothermal environments[J]. Rock Mechanics and Rock Engineering, 2021. https://doi.org/10.1007/s00603-021-02416-z. [81] 文志杰,黄景,蒋宇静,等.动静组合循环加载试验系统研制及试验[J].中南大学学报(自然科学版),2021,52(08):2817-2827. [82] 谭云亮,郭伟耀,赵同彬,等.深部巷道动静载试验系统研制及初步应用[J].岩石力学与工程学报. https://doi.org/10.13722/ j.cnki.jrme.2021.1236. [83] 程卫民,李怀兴,刘义鑫,王刚,黄启铭.真三维应力下煤岩水力润湿范围动态监测试验系统研制[J].岩石力学与工程学报,2022,41 (02):240-253. [84] 陈祥胜,李银平,施锡林,等.深部地层长岩心侵蚀渗流装置研发与试验研究[J].岩石力学与工程学报,2019,38(11):2254-2262. [85] 李波波,高政,杨康,李建华,任崇鸿,许江,曹偈.温度与孔隙压力耦合作用下煤岩吸附-渗透率模型研究[J].岩石力学与工程学报,2020,39(04):668-681. [86] 邬爱清,范雷,钟作武,张宜虎,余美万.现场裂隙岩体水力耦合真三轴试验系统研制与应用[J].岩石力学与工程学报,2020,39(11):2161- 2171. [87] JIANG Haopeng, JIANG Annan, ZHANG Fengrui. Experimental investigation on the evolution of damage and seepage characteristics for red sandstone under thermal–mechanical coupling conditions [J]. Environmental Earth Sciences (2021) 80:816. https://doi.org/10.1007/ s12665 -021-10121-x. [88] Tao Meng, Erbing Li, Yongbin Xue, et al. Experimental study on permeability and porosity evolution of host rock with varying damage degrees in excavation damaged area under real‑time ultra‑high temperature and triaxial stress/seepage pressure condition [J]. Bulletin of Engineering Geology and the Environment (2021) 80:8075–8097. https://doi.org/10.1007/s10064-021-02408-x. [89] 尹土兵,李夕兵,叶洲元,等.温-压耦合及动力扰动下岩石破碎的能量耗散[J]. 岩石力学与工程学报,2013,32(6):1197-1202. [90] Burdine N T. Rock failure under dynamic loading conditions[J]. Society of Petroleum Engineers Journal, 1963, 3(01): 1-8. [91] Haimson B C. Mechanical behaviour of rock under cyclic fatigue[C]. Cording EJ (ed)Stability of rock slopes, 1970: 845-863. [92] Ghamgosar M, Erarslan N, Williams D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings[J]. Experimental Mechanics, 2017, 57(1): 97-113. [93] Zang A, Yoon J S, Stephansson O, Heidbach O. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity[J]. Geophysical Journal International, 2013, 195(2): 1282-1287. [94] Youssef M a H, Jeffrey J H, Birger S, John I C Y. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2001, 16(4): 247-293. [95] Heimisson E R, Einarsson P, Sigmundsson F, Brandsdóttir B. Kilometer scale kaiser-effect identified in krafla volcano, iceland[J]. Geophysical Research Letters, 2015, 42(19): 7958-7965. [96] Kendrick J E, Smith R, Sammonds P, Meredith P G, Dainty M, Pallister J S. The influence of thermal and cyclic stressing on the strength of rocks from mount st. Helens, washington[J].Bulletin of Volcanology, 2013, 75(7): 728. [97] Liu Q, Huang S, Kang Y, Liu X. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze–thaw[J]. Cold Regions Science and Technology, 2015, 120: 96-107 [98] Zhang S J, Lai Y M, Zhang X F, Pu Y B, Yu W B. Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze–thaw cycle condition[J]. Tunnelling and Underground Space Technology, 2004, 19(3): 295-302. [99] Sorgi C, De Gennaro V. Water-rock interaction mechanisms and ageing processes in chalk,Advances in data, methods, models and their applications in geoscience: InTech, 2011. [100] Cattaneo S, Labuz J F. Damage of marble from cyclic loading[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 459-465. [101] Jamshidi A, Nikudel M R, Khamehchiyan M. Predicting the long-term durability of building stones against freeze–thaw using a decay function model[J]. Cold Regions Science and Technology, 2013, 92(92): 29-36. [102] Cosenza P, Ghoreychi M, Bazargan-Sabet B, Marsily G D. In situ rock salt permeability measurement for long term safety assessment of storage[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 509-526. [103] Voznesenskii A S, Krasilov M N, Kutkin Y O, Tavostin M N, Osipov Y V. Features of interrelations between acoustic quality factor and strength of rock salt during fatigue cyclic loadings[J]. International Journal of Fatigue, 2017, 97: 70-78. [104] Wang Z, Li S, Qiao L, Zhang Q. Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation[J].International Journal of Rock Mechanics & Mining Sciences, 2015, 73: 70-81. [105] Bagde M N, Petroš V. Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading[J]. Rock Mechanics and Rock Engineering, 2005, 38(3): 169-196. [106] Erarslan N, Alehossein H, Williams D J. Tensile fracture strength of brisbane tuff by static and cyclic loading tests[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1135-1151. [107] Gong M, Smith I. Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce[J]. Journal of Materials in Civil Engineering, 2003, 15(1): 93-99. [108] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(04):973-984. [109] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(01):1-13. [110] 左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,2017,42(06):1372-1379. [111] 彭林军,宋振骐,周光华,侯树宏,何维胜,郝建,李安.大采高综放动压巷道窄煤柱沿空掘巷围岩控制[J].煤炭科学技术,2021,49(10):34-43. [112] 宋振骐.我国采矿工程学科发展现状及其深层次发展问题的探讨[J].隧道与地下工程灾害防治,2019,1(02):7-12. [113] 宋振骐,郝建,石永奎,汤建泉,刘建康.“实用矿山压力控制理论”的内涵及发展综述[J].山东科技大学学报(自然科学版),2019,38(01):1-15. [114] 文志杰,景所林,宋振骐,蒋宇静,汤建泉,赵仁乐,肖庆华,张同俊,王洪涛,赵洪宝,孙国权,张桐桐,孔超.采场空间结构模型及相关动力灾害控制研究[J].煤炭科学技术,2019,47(01):52-61. [115] 刘天泉,申宝宏,张金才.长壁工作面顶底板应力和位移的实验研究[J].煤炭科学技术,1990(12):34-37+58. [116] 张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990(02):46-55. [117] 白矛,刘天泉,仲惟林.用力学方法研究岩层及地表移动[J].煤炭学报,1982(03):27-38. [118] 来兴平,贾冲,崔峰,张楠,陈建强,孙敬轩,张随林,冯港归.急倾斜巨厚煤层开采深度影响的覆岩能量演化规律研究[J].岩石力学与工程学报:1-14 [119] 来兴平,贾冲,崔峰,陈建强,常博,张随林,孙敬轩.急倾斜巨厚煤层群难采资源开采的覆岩破断与能量释放规律研究[J].煤炭学报:1-15 [120] 崔峰,何仕凤,来兴平,陈建强,孙秉成,贾冲,高远江.基于相空间重构与深度学习的冲击地压矿井时间序列b值趋势研究[J].煤炭学报:1-13 [121] 来兴平,许慧聪,康延雷.综放面覆岩运动“时-空-强”演化规律分析[J].西安科技大学学报,2018,38(06):871-877. [122] 袁亮.煤矿典型动力灾害风险判识及监控预警技术研究进展[J].煤炭学报,2020,45(5):1557-1566. [123] 曹安业,刘耀琪,杨旭等.物理指标与数据特征融合驱动的冲击地压时序预测方法[J].煤炭学报:1-16. [124] 来兴平,刘小明,单鹏飞,等.采动裂隙煤岩破裂过程热红外辐射异化特征[J].采矿与安全工程学报,2019,36(4):777-785. [125] HE S,SONG D,HE X,et al. Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention[J].Tunnelling and Underground Space Technology, 2020, 98:1-22. [126] Antonaci P, Bocca P, Masera D. Fatigue crack propagation monitoring by acoustic emission signal analysis[J]. Engineering Fracture Mechanics, 2012, 81: 26-32. [127] Lavrov A, Vervoort A, Wevers M, Napier J a L. Experimental and numerical study of the kaiser effect in cyclic brazilian tests with disk rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 287-302. [128] Přikryl R, Lokajíček T, Li C, Rudajev V. Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: The effect of rock fabric[J]. Rock Mechanics and Rock Engineering, 2003, 36(4): 255-270. [129] Karakus M, Akdag S, Bruning T. Rock fatigue damage assessment by acoustic emission[C],2016: 9-82. [130] Xu J, Li S C, Tao Y Q, Tang X J, Wu X. Acoustic emission characteristic during rock fatigue damage and failure[J]. Procedia Earth and Planetary Science, 2009, 1(1): 556-559. [131] Lockner D. The role of acoustic emission in the study of rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(7): 883-899. [132] Wang H L, Xu W Y, Cai M, Xiang Z P, Kong Q. Gas permeability and porosity evolution of a porous sandstone under repeated loading and unloading conditions[J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1-13. [133] Chow T M, Meglis I L, Young R P. Progressive microcrack development in tests on lac du bonnet granite—ii. Ultrasonic tomographic imaging[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 32(8): 751-761. [134] Munoz H, Taheri A. Local damage and progressive localisation in porous sandstone during cyclic loading[J]. Rock Mechanics and Rock Engineering, 2017, 50(12): 1-7. [135] Song H P, Zhang H, Fu D H, Zhang Q. Experimental analysis and characterization of damage evolution in rock under cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 157-164. [136] Kranz R L, Harris W J, Carter N L. Static fatigue of granite at 200ºc[J]. Geophysical Research Letters, 1982, 9(1): 1-4. [137] Zoback M D, Byerlee J D. The effect of cyclic differential stress on dilatancy in westerly granite under uniaxial and triaxial conditions[J]. Journal of Geophysical Research, 1975, 80(11):1526-1530. [138] David E C, Brantut N, Schubnel A, Zimmerman R W. Sliding crack model for nonlinearity and hysteresis in the uniaxial stress-strain curve of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52(6): 9-17. [139] 王高峰,李浩,田运涛,陈宗良,徐友宁,高幼龙,叶振南,李瑞冬,谢兴隆.甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测[J].岩石力学与工程学报:1-16 [140] 刘传正,王建新.自然灾害的基本型式及防控对策研究[J].岩石力学与工程学报:1-17 [141] 邱芹军,吴亮,马凯,谢忠,陶留锋.面向灾害应急响应的地质灾害链知识图谱构建方法[J].地球科学:1-22 [142] 王秋寒.基于Natech灾害链的社会脆弱性测度分析[D].南京信息工程大学,2022. [143] 梁卫国,赵阳升,徐素国,等.原位溶浸采矿理论研究[J].太原理工大学学报,2012,43(3):382-387. [144] 刘金海,杨伟利,姜福兴,等.先裂后注防治冲击地压的机制与现场试验[J].岩石力学与工程学报,2017,36(12):3040-3049. [145] 张勇,孙晓明,郑有雷,等.深部回采巷道防冲释能耦合支护技术及应用[J].岩石力学与工程学报,2019,38(9):1860-1869. [146] CUI F,JIA C,LAI X P. Study on deformation and energy release characteristics of overlying strata under different mining sequence in close coal seam group based on similar material simulation[J]. Energies,2019,12(23):4 485. [147] WU Q,LI X,TAO M,et al. Conventional triaxial compression on hollow cylinders of sandstone with various fillings: Relationship of surrounding rock with support[J]. Journal of Central South University,2018,25(8):1 976–1 986. [148] 谢和平,高峰,鞠杨,葛世荣,王国法,张茹,高明忠,吴刚,刘见中.深地煤炭资源流态化开采理论与技术构想[J].煤炭学报,2017,42(03):547-556. [149] 罗冰洁,彭芳乐,刘思聪,董蕴豪.城市地下空间韧性评价指标及模型探讨研究[J].铁道科学与工程学报:1-10 [150] 董静.韧性减灾框架下城市内涝灾害演变机理研究及治理响应[D].天津理工大学,2022. [151] 朱颖. 油页岩层理对其力学特性及裂缝起裂与扩展的影响研究[D].吉林大学,2022. [152] 谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570. [153] 齐庆新,陈尚本,王怀新,等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003,22(11):1852-1858. [154] 宫凤强,闫景一,李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报,2018,37(9):1993–2014. [155] 徐光黎,李志鹏,宋胜武,陈卫东,张世殊,董家兴.地下洞室围岩EDZ判别方法及标准[J].中南大学学报(自然科学版),2017,48(02):418-426. [156] 张立杰,柴鑫,来兴平,蒋东晖,邹磊,胥海东.急斜煤层EDZ围岩动态演化规律2D-BLOCK数值追踪模拟[J].西安科技大学学报,2008,28(04):613-618. [157] 江权,冯夏庭,苏国韶,陈国庆.基于松动圈–位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,2007(S1):2654-2662. [158] 李玉民,来兴平,蔡晓芒,吕兆海,苏普正.开采扰动区(EDZ)内层状围岩变尺度损伤及失稳预计实验及综合分析[J].西安科技大学学报,2007(01):15-19+29. [159] 来兴平,伍永平,朱世阳,胥海东,曹建涛,李立波,崔峰. 围岩失稳声光电集成监测系统及其监测方法[P]. 陕西:CN101526009,2009-09-09. [160] 闫少宏,尹希文.大采高综放开采几个理论问题的研究[J].煤炭学报,2008(05):481-484. [161] 来兴平,栾小东,伍永平,张勇,吕兆海.开采扰动区变尺度采空区覆岩介质动态损伤实验[J].煤炭学报,2007(09):902-906. [162] 来兴平,伍永平,任奋华,蔡美峰.西部矿区深部复杂应力环境下开采扰动区松软岩层力学特性[J].北京科技大学学报,2006(04):312-316. [163] 来兴平,蔡美峰,任奋华.河下开采扰动诱致采空区动态失稳定量预计与综合评价[J].岩土工程学报,2005(12):1421-1424. [164] 徐刚,张春会,蔺星宇,迟国铭,范志忠,于永江.基于分区支承力学模型的综放工作面顶板矿压演化与压架预测[J].煤炭学报,2022,47(10):3622-3633. [165] 黄庆享,曹健.浅埋近距煤层开采三场演化规律及煤柱群结构控制效应[J].煤炭学报,2021,46(S1):1-9. [166] 高明忠,王明耀,谢晶,高亚楠,邓光迪,杨本高,王飞,郝海春,谢和平.深部煤岩原位扰动力学行为研究[J].煤炭学报,2020,45(08):2691-2703. [167] 高琳.岩石变形破坏过程中的能量演化机制与灾变特征分析[D].中国矿业大学,2021. [168] 谭彦,郭伟耀,谭云亮等.巷道近场围岩能量释放规律及诱冲机制[J].煤炭学报,2021,46(S2):609-620. [169] 许家鼎,张重远,缑艳红,高万里,何满潮,陈群策,秦向辉,李少辉,孙东生.干热岩地应力测量评价方法与前沿挑战[J].地球学报:1-11. [170] 单鹏飞, 崔峰, 曹建涛, 等. 考虑区域地应力特征的裂隙煤岩流固耦合特性实验[J]. 煤炭学报, 2018, 43(1):105-117. [171] 李存宝,谢和平,谢凌志.页岩起裂应力和裂纹损伤应力的试验及理论[J].煤炭学报,2017,42(04):969-976. [172] Tao Meng, Richeng Liu, Xiangxi Meng, Donghua Zhang, Yaoqing Hu. Evolution of the permeability and pore structure of transversely isotropic calcareous sediments subjected to triaxial pressure and high temperature. Engineering Geology. 2019, 253: 27–35. [173] 杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J]岩土力学,2005,26(3):475-478. [174] 尤明庆.围压对岩石试样强度的影响及离散性[J].岩石力学与工程学报,2014,33(5):929-937. [175] 张志镇,高峰.受载岩石能量演化的围压效应研究[J].岩石力学与工程学报,2015,34(01):1-11 [176] 刘泉声,刘恺德,朱杰兵等.高应力下原煤三轴压缩力学特性研究[J].岩石力学与工程学报,2014,33(01):24-34. [177] 刘冬桥,胡天祥,王炀,凌凯,韩子杰,何满潮.动载频率对砂岩冲击岩爆影响的实验研究[J].岩石力学与工程学报,2022,41(07):1310-1324. [178] 张丰收,李猛利,张重远,何满潮,张盛生,衡德.高地应力下深部岩芯饼化裂缝发展规律及机制研究[J].岩石力学与工程学报,2022,41(03):533-542. [179] 王炀,何满潮,刘冬桥,凌凯,任富强.深部椭圆形洞室围岩冲击岩爆实验研究[J].岩石力学与工程学报,2021,40(11):2214-2228. [180] 孙晓明,任超,刘冬桥,何满潮,杨金坤,李志虎,朱嘉杰,袁俊超,齐振敏.基于岩爆碎屑研究的高楼山隧道岩爆机理分析与类型判定[J].工程科学学报:1-15. [181] 李地元,胡楚维,朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究[J]. 岩石力学与工程学报,2020,39(6):1081–1093. [182] 孙艺丹. 深部开采覆岩断裂动载下巷道围岩失稳机理及控制研究[D].辽宁工程技术大学,2020. [183] MORISSETTE P,HADJIGEORGIOU J. Ground support design for dynamic loading conditions:A quantitative data-driven approach based on rockburst case studies[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(5):909–919. [184] SIMSER B P. Rockburst management in Canadian hard rock mines[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(5):1 036–1 043. [185] LI C C,MIKULA P,SIMSER B,et al. Discussions on rockburst and dynamic ground support in deep mines[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(5):1 110–1 118. [186] JAYASINGHE B,ZHAO Z Y,CHEE A G T,et al. Attenuation of rock blasting induced ground vibration in rock-soil interface[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(4):770–778. [187] 刘鑫锦,苏国韶,冯夏庭,等.基于声音信号的室内岩爆动态预测方法[J].岩土力学,2018,39(10):3573-3580. [188] 崔峰,张帅,来兴平,等.强冲击倾向性顶板岩样孔洞充填力学特性及能量调控演化机制[J].岩石力学与工程学报,2020,39(12):2439-2450. [189] 来兴平,张帅,代晶晶,等.水力耦合作用下煤岩多尺度损伤演化特征[J]. 岩石力学与工程学报,2020,39(S2):3217-3228. [190] 来兴平,张帅,崔峰,等.含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取[J].岩石力学与工程学报,2020,39(3):433-444. [191] 单鹏飞,张帅,来兴平,等.不同卸压措施下“双能量”指标协同预警及调控机制分析[J].岩石力学与工程学报,2021,40(S2):3261-3273. [192] 来兴平,张帅,单鹏飞,曹建涛,崔峰,杨彦斌,许慧聪,张旭东,刘伯伟.深部煤岩体冲击地压自适应原位调控方法和系统[P].陕西省:CN113092251A,2021-07-09.
﹀
|
中图分类号: |
TD325
|
开放日期: |
2025-06-27
|