- 无标题文档
查看论文信息

论文中文题名:

 陕西黄河流域煤矿区植被净初级生产力时空变化及影响因素    

姓名:

 曹亚楠    

学号:

 20210010012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070503    

学科名称:

 理学 - 地理学 - 地图学与地理信息系统    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 资源环境与区域可持续发展    

第一导师姓名:

 陈秋计    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Spatiotemporal variation of vegetation net primary productivity and its influencing factors in the coal mining area of the Yellow River Basin in Shaanxi    

论文中文关键词:

 地表水分指数 ; CASA模型 ; 陕西黄河流域 ; 煤矿区 ; 气候变化 ; 人类活动    

论文外文关键词:

 Land Surface Water Index ; CASA ; Yellow River Basin of Shaanxi ; coal mine area ; climate change ; human activities    

论文中文摘要:

植被是陆地生态系统中最重要的组分之一,对减缓二氧化碳浓度上升和全球气候变暖起到重要作用。植被净初级生产力(Net Primary Productivity,NPP)可以有效量化陆地生态系统的服务能力,能够表征绿色植物群落自身的生产能力和地表生态质量状况,也是评估植被固碳能力的重要指标。陕西黄河流域是我国重要的产煤区,分布有神府、子长、韩城等14个煤矿区,对气候变化和人类活动十分敏感。在全球气候变暖和“碳达峰”与“碳中和”的背景下,探究煤矿区植被NPP时空变化特征及其影响因素可以有效揭示自然条件与人为活动对植被NPP的影响程度,对促进矿区生态环境建设和节能减排有重要意义。

 本文以引入地表水分指数的优化CASA模型为理论基础,将遥感数据、气象数据和植被类型数据作为输入参数,对2000-2020年陕西黄河流域植被NPP的估算,并对估算结果进行验证。使用GIS和相关地统计空间分析方法,深入探讨植被NPP时空变化特征及气候变化与人类活动对煤矿区植被NPP的影响。研究结论如下:

(1)2000-2020年陕西黄河流域植被NPP在时间上呈显著的线性增加趋势。NPP均值在空间分布上呈南高北低的分布特征。其中植被NPP增加区域占总面积的88.21%,极显著增加区域面积占15.29%,分布于延安和咸阳北部以及榆林的东部地区。植被NPP减少区域面积占11.79%,仅有1.33%的区域呈现显著减少趋势,空间上呈点状离散分布在西安市、宝鸡市及延安市的城区。煤炭资源富集地区植被NPP波动较大。

(2)神府矿区、子长矿区、韩城矿区植被NPP总体上呈现显著的增加趋势,增长速率表现为子长矿区>神府矿区>韩城矿区。其中韩城矿区植被NPP均值高于其它矿区。从空间上来看,神府矿区植被NPP均值呈现东高西低的分布格局,子长矿区呈现由北至南逐渐递减的分布格局,韩城矿区呈现西高东低,南高北低的分布格局。神府矿区和子长矿区植被NPP以显著增加为主,韩城矿区植被NPP以不显著增加为主。

(3)气候变化和采矿活动在不同矿区植被改善和退化中的相对作用表现出一定的差异性。神府矿区植被NPP随高程呈现波动变化,子长矿区和韩城矿区植被NPP随海拔的升高而不断增大。3个矿区植被NPP均随坡度的增大表现为先增后减。神府矿区植被NPP与气温在时间上表现为负相关,在空间上以正相关为主。韩城矿区和子长矿区植被NPP与气温表现出正相关关系。3个矿区植被NPP与降水总体均以正相关为主,神府矿区植被NPP与降水相关性较强。采矿活动虽然在一定时间段内造成了矿区植被NPP的损失,但在相对较好的宏观气候影响、人为介入和自然恢复的条件下,植被整体趋好,矿区NPP持续增长。

论文外文摘要:

Vegetation is one of the most important components of terrestrial ecosystems and plays a significant role in mitigating the rise of CO2 concentration and global warming. Net Primary Productivity (NPP) can effectively quantify the service capacity of terrestrial ecosystems, characterize the productivity of green plant communities themselves and the ecological quality status of the land surface, and is also an important indicator to assess the carbon sequestration capacity of vegetation. The Yellow River Basin in Shaanxi Province is an important coal-producing area in China, with 14 coal mining areas including Shenfu, Zichang and Hancheng. They are very sensitive to climate change and human activities. In the context of global warming and "carbon peaking" and "carbon neutral", exploring the spatial and temporal characteristics of NPP in coal mining areas and its influencing factors can effectively reveal the degree of influence of natural conditions and anthropogenic activities on vegetation NPP, which is important for promoting ecological environment construction, energy conservation and emission reduction in mining areas. It is important to promote the construction of mine ecological environment, energy conservation and emission reduction.

Based on the CASA model incorporating Land Surface Water Index, this study used remote sensing data, meteorological data and vegetation type data to achieve the estimation of NPP in the Yellow River basin of Shaanxi Province from 2000 to 2020. Then, the estimation results were verified. Using GIS and related geostatistical spatial analysis methods, this article deeply discussed the temporal and spatial changes of vegetation NPP and revealed the effects of climate change and human activities on NPP in coal mining areas. The conclusions were as follows:

(1) The NPP of the vegetation in the Yellow River basin of Shaanxi Province showed a significant linear increasing trend in time from 2000 to 2020. The average of NPP showed the distribution characteristics of high in the south and low in the north. Among them, the area of vegetation NPP increased accounted for 88.21% of the total area, and the highly significant increased accounted for 15.29%, distributed in the northern part of Yan'an and Xianyang and the eastern part of Yulin. The area of vegetation NPP decreased accounted for 11.79%, and only 1.33% of the area showed significant decrease, which was spatially distributed in the urban areas of Xi'an, Baoji and Yan'an in a point-like dispersion. The annual fluctuation of NPP in coal resource-rich areas was large.

(2) The vegetation NPP in Shenfu mining area, Zichang mining area and Hancheng mining area showed a significant increasing trend in general, and the growth rate was Zichang mining area > Shenfu mining area > Hancheng mining area. Among them, the mean value of vegetation NPP in Hancheng mine was higher than that in other mines. Spatially, the distribution pattern of multi-year vegetation NPP in the Shenfu mine was high in the east and low in the west, the distribution pattern in the Zichang mine was decreasing from north to south, and the distribution pattern in the Hancheng mine was high in the west and low in the east, and high in the south and low in the north. The NPP of vegetation in the Shenfu and Zichang mines mainly increased significantly. The NPP of vegetation in the Hancheng mine increased insignificantly.

(3) The relative roles of climate change and mining activities in the improvement and degradation of vegetation in different mining areas showed some variability. The NPP of vegetation in Shenfu mine showed fluctuation with elevation, while the average NPP of vegetation in Zichang mine and Hancheng mine increased with elevation. the NPP of vegetation in all three mines increased with slope and then decreased. The NPP of vegetation in the Shenfu mining area showed a negative correlation with temperature in time and a predominantly positive correlation in space. The NPP of vegetation in Hancheng and Zichang mines showed a positive correlation with temperature, and the NPP of vegetation in all three mines was mainly positively correlated with precipitation, and the correlation between NPP of vegetation and precipitation in Shenfu mine was stronger. Although mining activities caused the loss of vegetation NPP in the mine area during a certain period of time, under the conditions of relatively good macroclimatic influence, anthropogenic and natural restoration, the vegetation as a whole tended to improve and the mine area NPP continued to grow.

参考文献:

[1]IPCC, Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge Press, Cambridge, UK, 2021.

[2]习近平. 继往开来,开启全球应对气候变化新征程[N]. 人民日报, 2020-12-13(002).

[3]杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4): 534-574.

[4]Huang Y, Sun W, Qin Z, et al. The role of China's terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO2 emissions[J]. National Science Review, 2022, 9(8): 57-70.

[5]Field C B. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51(1): 74-88.

[6]戴尔阜, 黄宇, 吴卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报, 2016, 71(1): 21-34.

[7]陈峰, 李红波, 刘亚静. 基于GIS和CASA的滇南山区植被NPP时空分异及其影响因素—以云南省元阳县为例[J]. 生态学杂志, 2018, 37(7): 2148-2158.

[8]李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079.

[9]陈安平, 赵淑清, 慈龙骏, 等. 中国森林生物量的估算: 对Fang等Science一文(Science, 2001, 291: 2320-2322)的若干说明[J]. 植物生态学报, 2002, 26(2): 243-249.

[10]王宗明, 梁银丽. 植被净第一性生产力模型研究进展[J]. 干旱地区农业研究, 2002, (2): 104-107.

[11]Lieth H. Modeling the primary productivity of the world[J]. Trop Ecol, 1972a, 13: 125-130.

[12]Box E, Lieth H, Wolaver T. Miami model productivity map[J]. Trop Ecol, 1973, 1: 303-332.

[13]Lieth H. Evapotranspiration and primary productivity: CW Thornthwaite memorial model[J]. Pub in Climatology, 1972b, 25: 37-46.

[14]Uchijima Z, Hiroshi S. Agroclimatic evaluation of net primary productivity of natural vegetations[J]. Journal of Agricultural Meteorology, 1985, 40(4): 343-352.

[15]Efimova N A. Plant productivity and radiation factor[M]. Gidrometeoizdat Leingrad. 1977.

[16]Cannell M G R. World forest biomass and primary productivity data[M]. London: London Academic Press. 1982.

[17]周广胜, 张新时. 自然植被净第一性生产力模型初探[J]. 植物生态学报, 1995, (3): 193-200.

[18]周广胜, 郑元润, 陈四清, 等. 自然植被净第一性生产力模型及其应用[J]. 林业科学, 1998, (5): 4-13.

[19]朱志辉. 自然植被净第一性生产力估计模型[J]. 科学通报, 1993, (15): 1422-1426.

[20]叶永昌, 周广胜, 殷晓洁. 1961-2010年内蒙古草原植被分布和生产力变化—基于MaxEnt模型和综合模型的模拟分析[J]. 生态学报, 2016, 36(15): 4718-4728.

[21]Gang C, Zhou W, Wang Z, et al. Comparative assessment of grassland NPP dynamic in response to climate change in China, north America, Europe and Australia from 1981 to 2010[J]. Journal of Agronomy and Crop Science, 2015, 201(1): 57-68.

[22]任继周, 胡自治, 牟新待, 等. 草原的综合顺序分类法及其草原发生学意义[J]. 中国草原, 1980, (1): 12-24, 38.

[23]王大为, 赵军, 韩涛, 等. 基于CSCS的黑河上游潜在植被NPP及其水热关系研究[J]. 草业学报, 2014, 23(6): 11-19.

[24]王连喜, 李萌萌, 李琪, 等. 基于CASA模型的陕西省NPP遥感估算[J]. 西部林业科学, 2015, 44(2): 74-79.

[25]李传华, 曹红娟, 范也平, 等. 基于校正的CASA模型NPP遥感估算及分析—以河西走廊为例[J]. 生态学报, 2019, 39(5): 1616-1626.

[26]王丽霞, 丁慧兰, 刘招, 等. 基于CASA模型探究泾河流域植被NPP时空动态及其对气候变化的响应[J]. 水土保持研究, 2022, 29(1): 190-196.

[27]陈晓杰, 张长城, 张金亭, 等. 基于CASA模型的植被净初级生产力时空演变格局及其影响因素—以湖北省为例[J]. 水土保持研究, 2022, 29(3): 253-261.

[28]刘文瑞, 李晓婷, 李彤, 等. 基于MODIS和CASA模型的伊春市森林植被NPP变化特征及其影响因子分析[J]. 生态学杂志, 2022, 41(1): 150-158.

[29]Potter C S, Klooster S, Myneni R, et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998[J]. Global Planetary Change, 2003, 39: 201-213.

[30]Imhoff M L, Bounoua L, Defries R, et al. The consequences of urban land transformation on net primary productivity in the United States[J]. Remote Sensing of Environment, 2004, 89(4): 434-443.

[31]朱文泉, 陈云浩, 潘耀忠, 等. 基于GIS和RS的中国植被光利用率估算[J]. 武汉大学学报(信息科学版), 2004, (8): 694-698, 714.

[32]朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, (6): 700-706.

[33]朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算—以中国内蒙古为例[J]. 遥感学报, 2005, (3): 300-307.

[34]Prince S D, Goward S N. Global Primary Production: A Remote Sensing Approach[J]. Journal of Biogeography, 1995, 22: 316-336.

[35]Veroustraete F. VGT, modelling and climate change effects[M]. The Hague, The Netherlands: Academic Publishing, 1994: 151-177.

[36]Coops N C, Waring R H, Lansberg J J. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity[J]. Forest Ecology and Management, 1998, 104(1-3): 113-127.

[37]刘建锋, 肖文发, 郭明春, 等. 基于3-PGS模型的中国陆地植被NPP格局[J]. 林业科学, 2011, 47(5): 16-22.

[38]林思美, 黄华国. 基于3PGS-MTCLIM模型模拟根河林区火后植被净初级生产力恢复及其影响因子[J]. 应用生态学报, 2018, 29(11): 3712-3722.

[39]何丽鸿, 王海燕, 雷相东. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性[J]. 应用生态学报, 2016, 27(2): 412-420.

[40]张少伟, 张弓乔, 惠刚盈. 内蒙古大兴安岭森林净初级生产力时空格局分析[J]. 林业科学研究, 2019, 32(5): 74-82.

[41]裴凤松, 黎夏, 刘小平, 等. 城市扩张驱动下植被净第一性生产力动态模拟研究—以广东省为例[J]. 地球信息科学学报, 2015, 17(4): 469-477.

[42]李传华, 韩海燕, 范也平, 等. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8): 1330-1339.

[43]李传华, 赵军. 2000-2010年石羊河流域NPP时空变化及驱动因子[J]. 生态学杂志, 2013, 32(3): 712-718.

[44]毛学刚, 范文义, 李明泽, 等. 黑龙江长白山森林生物量的时空变化分析[J]. 植物生态学报, 2011, 35(4): 371-379.

[45]周艳莲, 居为民, 柳艺博. 1981-2019年全球陆地生态系统碳通量变化特征及其驱动因子[J]. 大气科学学报, 2022, 45(3): 332-344.

[46]Kang F, Li X, Du H, et al. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China[J]. Remote Sens, 2022, 14(2): 366-388.

[47]Wang H, Liu G H, Li Z S, et al. Impacts of climate change on net primary productivity in arid and semiarid regions of China[J]. Chinese Geographical Science, 2016, 26(1): 35-47.

[48]邵嘉豪, 李晶, 闫星光, 等. 基于地理探测器的山西省2000-2020年NPP时空变化特征及驱动力分析[J]. 环境科学, 2023, 44(1): 312-322.

[49]Li Z, Chen Y N, Zhang Q F, et al. Spatial patterns of vegetation carbon sinks and sources dataset in Central Asia[J]. Journal of Hydrology, 2020, 32: 106200-106205.

[50]叶辉, 王军邦, 黄玫, 等. 青藏高原植被降水利用效率的空间格局及其对降水和气温的响应[J]. 植物生态学报, 2012, 36(12): 1237-1247.

[51]Birdsey R A, Plantinga A J, Heath L S. Past and Prospective Carbon Storage in United-States forests[J]. Forest Ecol Manage, 1993, 58(59): 33-40.

[52]Brown S, Lugo A E. Biomass of Tropical Forests: A New Estimate Based on Forest Volumes[J]. Science, 1984, 223(4642): 1290-1293.

[53]方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, (5): 497-508.

[54]李晶晶, 党坤良, 周勇, 等. 秦岭中段南坡华山松林能量结构特征和碳储量研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(11): 58-66.

[55]孙雪莲, 熊河先, 胥辉, 等. 高山松天然林单木生物量因子模型构建[J]. 林业资源管理, 2016, 2016(3): 49-53, 60.

[56]杜雪, 王景弟, 白彦锋, 等. 基于克里金插值法的湖南省慈利县森林碳储量专题图研究[J]. 西北林学院学报, 2022, 37(1): 198-204.

[57]孙静, 范文义, 于颖, 等. 基于InTEC模型的塔河森林净初级生产力影响因子定量分析[J]. 应用生态学报, 2019, 30(3): 793-804.

[58]姬盼盼, 高敏华, 付晓红, 等. 中国西北半干旱区净初级生产力驱动因子空间计算分析[J]. 生态学报, 2019, 39(24): 9023-9032.

[59]徐雨晴, 肖风劲, 於琍. 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述[J]. 生态学报, 2020, 40(14): 4710-4723.

[60]许洁, 陈惠玲, 商沙沙, 等. 2000-2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592-601.

[61]朱士华, 艳燕, 邵华, 等. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 2017, 32(11): 1844-1856.

[62]袁博. 秦岭山地植被净初级生产力及其对气候变化的响应[D]. 西北大学, 2013.

[63]Cao W, Li R, Chi X, et al. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China[J]. Ecological Indicators, 2017, 76: 1-14.

[64]Wu K, Zhou C, Zhang Y, et al. Long-Term Spatiotemporal Variation of Net Primary Productivity and Its Correlation with the Urbanization: A Case Study in Hubei Province, China[J]. Front Environ Sci 2022, 9: 656.

[65]Yang H, Zhong X, Deng S, et al. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China[J]. Catena, 2021, 206(1-2): 105542.

[66]侯湖平, 张绍良, 丁忠义, 等. 基于植被净初级生产力的煤矿区生态损失测度研究[J]. 煤炭学报, 2012, 37(3): 445-451.

[67] 徐占军, 侯湖平, 张绍良, 等. 采矿活动和气候变化对煤矿区生态环境损失的影响[J]. 农业工程学报, 2012, 28(5): 232-240.

[68] 吴国伟, 赵艳玲, 付艳华, 等. 复垦矿区土地利用类型变化对植被碳储量的影响[J]. 中国生态农业学报, 2015, 23(11): 1437-1444.

[69]郝成元, 杨志茹. 基于MODIS数据的潞安矿区NPP时空格局[J]. 煤炭学报, 2011, 36(11): 1840-1844.

[70]田惠文, 张欣欣, 毕如田, 等. 煤炭开采导致的农田生态系统固碳损失评估[J]. 煤炭学报, 2020, 45(4): 1499-1509.

[71]Ke J, Zhou D, Hai C, et al. Temporal and Spatial Variation of Vegetation in Net Primary Productivity of the Shendong Coal Mining Area, Inner Mongolia Autonomous Region[J]. 2022, 14(17): 10883.

[72]孙应龙, 钱拴, 延昊, 等. 2000-2018年云南省典型矿区植被生态时空变化特征—以临沧市为例[J]. 生态环境学报, 2019, 28(12): 2381-2389.

[73] 范德芹, 邱玥, 孙文彬, 等. 基于遥感生态指数的神府矿区生态环境评价[J]. 测绘通报, 2021, (7): 23-28.

[74]肖武, 张文凯, 吕雪娇, 等. 西部生态脆弱区矿山不同开采强度下生态系统服务时空变化—以神府矿区为例[J]. 自然资源学报, 2020, 35(1): 68-81.

[75]Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.

[76]朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, (3): 413-424.

[77]童成立, 张文菊, 汤阳, 等. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005, (3): 165-169.

[78]张刚, 汤国安, 宋效东, 等. 黄土高原可照时间空间分布特征研究[J]. 武汉大学学报(信息科学版), 2015, 40(6): 834-840.

[79]Los S O. Linkages Between Global Vegetation and Climate: An Analysis Based on NOAA Advanced Very High Resolution Radiometer Data[D]. National Aeronautics and Space Administration, 1998.

[80]Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7: 811-841.

[81]Bao G, Bao Y H, Qin Z H, et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observations & Geoinformation, 2016, 46: 84-93.

[82]Field C B, Behrenfeld M, Randerson J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science, 1998, 281: 237-240 .

[83]朱安然, 孙睿, 王梦佳. 植被光能利用率遥感估算[J]. 遥感学报, 2021, 25(6): 1227-1243.

[84]King H, Bao G, Urtnasan M, et al. Modifying the maximal light use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau[J]. International Journal of Remote Sensing, 2019, 41(10): 3740-3760.

[85]周妍妍, 朱敏翔, 郭晓娟, 等. 疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J]. 生态学报, 2019, 39(14): 5127-5137.

[86]Yuan Q Z, Wu S H, Zhao D S, et al. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. journal of Geographical Sciences, 2014, 24(1): 3-17.

[87]石志华, 刘梦云, 吴健利, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206-211+345.

[88]史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445-453.

[89]吴宗洋, 蔡卓雅, 郭英, 等. 黄河流域多源遥感土地覆被数据精度评价与一致性分析[J/OL]. 中国生态农业学报(中英文): 1-12.

[90]范立民, 马雄德, 李永红, 等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报, 2017, 42(2): 276-285.

[91]倪向南, 郭伟, 乔凯. 陕北风沙过渡带植被净初级生产力变化特征及原因[J]. 中国沙漠, 2018, 38(4): 889-898.

[92]王国芳, 毕如田, 张吴平, 等. 典型矿区植被覆盖度时空分布特征及影响因素[J]. 生态学报, 2020, 40(17): 6046-6056.

[93]卞正富, 于昊辰, 雷少刚, 等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报, 2021, 46(5): 1378-1391.

[94]张文凯, 肖武, 吕雪娇, 等. 2005-2015神东矿区不同开采强度下区域NPP时空变化分析[J]. 矿山测量, 2019, 47(5): 1-6+19.

[95]谢少少, 马超, 田淑静, 等. 2000-2010年神东矿区植被NPP的变化特征及影响因素分析[J]. 测绘科学技术学报, 2015, 32(1): 47-51.

[96]项阳, 李君轶, 陈宏飞. 基于CASA模型的神东矿区植被NPP变化研究[J]. 湖北农业科学, 2017, 56(10): 1843-1846+1856.

[97]谭学玲, 闫庆武, 王瑾, 等. 榆神府矿区植被覆盖的动态变化及其影响因素[J]. 生态学杂志, 2018, 37(6): 1645-1653.

中图分类号:

 K901/P208.2    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式