- 无标题文档
查看论文信息

论文中文题名:

 渭北矿区防水煤柱蠕变损伤机理及稳定性研究    

姓名:

 纪丙楠    

学号:

 19204053033    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 矿井灾害防治    

第一导师姓名:

 李昂    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Study on creep damge mechanism and stability of waterproof coal pillar in Weibei mining area    

论文中文关键词:

 防水煤柱 ; 巷道掘进 ; 煤层回采 ; 蠕变    

论文外文关键词:

 waterproof coal pillars ; roadway boring ; coal seam retrieval ; creep    

论文中文摘要:

渭北矿区长期受到基岩水威胁,由于开采扰动作用基岩水转变为采空水,防水煤柱长期受弱酸性采空区积水的浸泡将导致煤柱强度的衰减,加速煤柱的蠕变影响自身的稳定性,甚至导致防水煤柱破损稳,造成涌水溃帮灾害,威胁临近采面安全。从采空区积水以及煤体蠕变特性对煤柱留设宽度以及长期稳定性评价已十分必要。基于此,本文采用试验研究,理论分析,现场实测等手段对渭北矿区王村煤矿防水煤柱合理留设宽度及长期稳定性进行分析,研究结果表明:

(1)通过对王村煤矿所取煤样进行三轴压缩试验以及蠕变试验分析,同级围压下保水煤样的抗压强度、粘聚力较天然煤样低,蠕变变形增加,水对煤体强度有明显软化作用,加速了煤体蠕变;而在高围压条件下,煤体强度则较低围压高,变形能力变弱,围压增加一定程度限制了围岩变形,与对巷道围岩进行锚固机理一致。

(2)分析巷道掘进时煤柱弹塑性区宽度理论发现,巷道掘进时煤柱中部弹性核区主要与巷道高度、支承压力峰值系数有关。而煤柱两侧塑性破碎区受支承压力峰值、煤体强度以及支护力等因素影响,但影响幅度不同,随支承压力峰值巷道高度顶板下沉角增加而增加,随煤体强度支护力增加而减小。提高帮部锚固强度控与制顶板下沉可以有效抑制塑性区的增长。

(3)根据煤层回采煤柱弹塑性区宽度计算理论分析,煤柱弹性区宽度与水压成正比关系,当采空侧水压过大时,应该煤柱核区宽度获及时对排水可有效缓解采空区水压力;煤柱塑性区应力、应变以及位移都随时间变化而变化,塑性破碎区域随时间不断向煤柱中心转移,采空区侧塑性区宽度蠕变增量较大,验证了水对煤体弱化以及加速蠕变作用;煤体应变软化系数对煤柱塑性区初始值影响较大,对最终蠕变稳定量影响较小,而支护力的增加可有效抑制煤柱的蠕变作用。

(4)掘进巷道理论留设宽度相较与回采煤层时的理论留设宽度较小,但其值与煤层回采塑性区宽度初始值相近,验证了两种理论的合理性。巷道掘进塑性区宽度计算为煤柱理论留设宽度提供了参考作用,当回采后采空区积水较小,或煤体强度较高时,可直接采用该理论计算煤柱留设宽度。

(5)通过对锚索加固后的煤柱支承压力以及帮部与顶板的收敛量监测发现,锚索补强取得了良好的效果,煤柱支承压力峰值稳定在距煤壁处4m左右,煤柱帮部最大收敛量0.3m,进一步验证了理论公式的合理性,为两种工况下煤柱留设提供了理论参考。

论文外文摘要:

Weibei mining area has been threatened by bedrock water for a long time. Due to mining disturbance, bedrock water is transformed into goaf water. The long-term immersion of waterproof coal pillar by weak acid goaf water will lead to the attenuation of coal pillar strength, accelerate the creep of coal pillar and affect its stability, and even lead to the damage and stability of waterproof coal pillar, resulting in water inrush and collapse disasters, threatening the safety of adjacent mining face. It is necessary to evaluate the coal pillar width and long-term stability from the goaf water accumulation and coal creep characteristics. Based on this, this paper analyzes the reasonable width and long-term stability of waterproof coal pillar in Wangcun Coal Mine of Weibei Mining Area by means of experimental research, theoretical analysis and field measurement. The results show that :

(1) Through triaxial compression test and creep test analysis of coal samples taken from Wangcun Coal Mine, the compressive strength and cohesion of water-retaining coal samples are lower than those of natural coal samples under the same confining pressure, and the creep deformation increases. Water has obvious softening effect on the strength of coal and accelerates the creep of coal. Under the condition of high confining pressure, the strength of coal is lower, the deformation capacity is weaker, and the increase of confining pressure limits the deformation of surrounding rock to a certain extent, which is consistent with the anchoring mechanism of roadway surrounding rock.

(2) According to the theoretical analysis of elastic-plastic coal pillar zone width of in roadway excavation, it is found that the elastic core area in the middle of coal pillar is mainly related to the height of roadway and the peak coefficient of abutment pressure. The plastic fracture zone on both sides of the coal pillar is affected by the peak value of abutment pressure, coal strength and support force, but the influence range is different. The roof subsidence angle increases with the increase of the peak value of abutment pressure, and decreases with the increase of coal strength support force. Improving the anchorage strength of the side and controlling the roof subsidence can effectively inhibit the growth of the plastic.

(3)According to the theoretical analysis of the elastic-plastic zone width calculation of the coal seam coal pillar, the elastic zone width of the coal pillar is proportional to the water pressure. When the water pressure of the goaf side is too large, the width of the coal pillar core area should be timely drainage, which can effectively alleviate the water pressure of the goaf. The stress, strain and displacement of the plastic zone of the coal pillar change with time, and the plastic fracture zone continuously transfers like the center of the coal pillar. The creep increment of the width of the plastic zone in the goaf side is large, which verifies the weakening and accelerating creep of the coal body by water. The strain softening coefficient of coal has great influence on the initial value of plastic zone of coal pillar, and has little influence on the final creep stability. The increase of support force can effectively inhibit the creep of coal pillar.

(4) The theoretical setting width of tunneling roadway is smaller than that of coal seam mining, but its value is close to the initial value of plastic zone width of coal seam mining, which verifies the rationality of the two theories. The calculation of plastic zone width of roadway excavation provides a reference for the theoretical setting width of coal pillar. When the goaf water is small or the coal strength is large after mining, this theory can be directly used to calculate the setting width of coal pillar.

(5) Through the monitoring of the abutment pressure of coal pillar and the convergence of the sidewall and roof after the anchor cable reinforcement, it is found that the anchor cable reinforcement has achieved good results. The peak value of the abutment pressure of coal pillar is stable at about 4 m away from the coal wall, and the maximum convergence of the sidewall of coal pillar is 0.3 m, which further verifies the rationality of the theoretical formula and provides a theoretical reference for the coal pillar retention in the two cases.

参考文献:

[1]鞠金峰, 许家林, 朱卫兵. 西部缺水矿区地下水库保水的库容研究[J]. 煤炭学报,2017, 42(02): 381-387.

[2]汪北方, 武力, 张晶, 等. 煤矿地下水库煤岩变形特性的尺寸效应试验[J/OL]. 采矿与安全工程学报, 2021, 38(04): 810-818.

[3]孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J].煤炭学报, 2020, 45(01): 304-316.

[4]李建华. 煤矿地下水库储水浸泡对煤柱坝体强度影响的试验研究[J]. 煤矿开采, 2018, 23(03): 15-17+9.

[5]姚强岭, 王伟男, 杨书懿, 等. 含水率影响下砂质泥岩直剪特性及声发射特征[J/OL]. 煤炭学报: 2021, 46(09): 2910-2922.

[6]姚强岭, 朱柳, 黄庆享, 等. 含水率对细粒长石岩屑砂岩蠕变特征影响试验研究[J].采矿与安全工程学报, 2019, 36(05): 1034-1042+1051.

[7]来兴平, 张帅, 崔峰, 等. 含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取[J]. 岩石力学与工程学报, 2020, 39(03):433-444.

[8]王文, 李化敏, 袁瑞甫, 等. 动静组合加载含水煤样的力学特征及微观力学分析[J]. 煤炭学报, 2016, 41(3):611-617.

[9]王凯, 蒋一峰, 徐超. 不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J].岩石力学与工程学报, 2018, 37(5): 1070-1079.

[10]李波波, 成巧耘, 李建华, 等. 含水煤岩裂隙压缩特征及渗透特性研究[J]. 岩石力学与工程学报, 2020, 39(10): 2069-2078.

[11]王文, 张世威, LIU Kai, 等. 真三轴动静组合加载饱水煤样动态强度特征研究[J]. 岩石力学与工程学报, 2019, 38(10): 2010-2020.

[12]张安斌, 刘祥鑫, 张艳博, 等. 不同含水率泥质粉砂岩破裂声发射特性试验研究[J]. 地下空间与工程学报, 2017, 13(03): 591-597.

[13]S. Yagiz. The Effect of pH of the Testing Liquid on the Degradability of Carbonate Rocks[J]. Geotechnical and Geological Engineering, 2018, 36(4): 2351-2363.

[14]Sampath KHSM, Perera MSA, Li, DY, et al. Evaluation of the mechanical behaviour of brine + CO2 saturated brown coal under mono-cyclic uni-axial compression[J]. Engineering Geology. 2019,263.

[15]Sampath KHSM, Perera MSA, Elsworth D, et al. Experimental investigation on the mechanical behavior of victorian brown coal under brine saturation. Energy Fuels , 2018,32 (5), 5799–5811.

[16]Poulsen Brett, Shen B, Williams David, et al. Strength reduction on saturation of coal and coal measures rocks with implications for coal pillar strength. International Journal of Rock Mechanics and Mining Sciences, 2014, 71, 41–52.

[17]Verstrynge, Adriaens R, Elsen J, et al. Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone[J]. Construction and Building Materials, 2014, 54:78-90.

[18]Heggheim T, Madland M V, Risnes R, et al. A chemical induced enhanced eakening of chalk by seawater[J]. Journal of Petroleum Science and Engineering. 2004, 46(3): 171-184.

[19]Vishal V, Ranjith P G, Singh TN. An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission[J]. Journal of Natural Gas Science and Engineering, 2015, 22:428-436.

[20]张天军, 郭毅, 庞明坤, 等. 不同环境湿度下承压破碎煤岩蠕变分形特征研究[J]. 采矿与安全工程学报,2020, 37(05): 1037-1044.

[21]张雷, 周宏伟, 王向宇, 等. 考虑蠕变影响的深部煤体分数阶渗透率模型研究[J]. 岩土工程学报, 2020, 42(08): 1516-1524.

[22]蔡婷婷, 冯增朝, 姜玉龙, 等. 不同温度应力下煤体蠕变中的渗流规律研究[J]. 岩石力学与工程学报, 2018, 37(S2): 3898-3904.

[23]王路军, 周宏伟, 荣腾龙, 等.深部煤体非线性蠕变本构模型及试验研究[J]. 煤炭学报, 2018, 43(08): 2196-2202.

[24]郝富昌, 刘彦伟, 龙威成, 等. 蠕变-渗流耦合作用下不同埋深有效抽采半径研究[J]. 煤炭学报, 2017, 42(10): 2616-2622.

[25]谌文武, 原鹏博, 刘小伟, 等. 分级加载条件下红层软岩蠕变特性试验研究[J]. 岩石力学与工程学报, 2009, 28(1): 3076-3081.

[26]Danesh, Nima N. Chen, Zhongwei, et al. Characterisation of creep in coal and its impact on permeability: An experimental study. 2017, 173, 200-211.

[27]Geraldine Fabre, Frederic Pellet.Creep and time-dependent damage in argillaceous rocks[J]. International journal of rock mechanics and mining sciences, 2006, 43(6): 950-960.

[28]Dubey R K. Gairola V K.Influence of structural anisotropy on creep of rocksalt from Himalaya, India: An experimental approach[J]. Journal of Structural Geology, 2008, 30(06): 710.

[29]蔡美蜂. 岩石力学与工程[M]. 北京:科学出版社,2002.

[30]Zhou X.P., H a Q.L.. Analysis of dcformation localization and the complcte stress-strainrclation for brittlc rock subjcctcd to dynamic co mpressivc loads [J]. Intcrnational Journal ofRock Mcchanics and Mining Scicnccs, 2004, 41(2): 311-319.

[31]Shao J.F, Jia Y, Kondo D, ct al. A coupled clastoplastic damagc modcl for scmi-brittlcmatcrials and cxtension to unsaturated conditions [J]. Mcch anics of Matcrials. 2006. 38: 218-232.

[32]Baisita M, Gross, D. The sliding crack modcl of brittlc dcformation:an intcrnal variablcapproach[J]. Int. J , so lids Struct ,1998 , 35(3): 487-509.

[33]卓家寿, 章青. 不连续介质力学的界面元法[M]. 北京: 科学出版社, 2000.

[34]陈景涛, 冯夏庭. 高地应力下硬岩的本构模型研究[j], 岩土力学, 2007, 8(11): 2711-2718.

[35]Ramamurtby T. Stability of rock mass [J]. Indian Gcotcchnic al Journal, 1986, 16: 1-73.

[36]Dems K., Norz Z.. Stablility conditions for brittlc-plastic structurcs with propag ating damagcsurfaccs[J]. Journal of struc tural Mcch anics, 1985. 13(1): 20-28.

[37]沈为. 弹脆性材料的损伤本构关系及应用[J]. 力学学报, 1991, 23(5): 374-378.

[38]蒋明镜, 沈珠江. 考虑剪胀的弹脆塑性软化柱形孔扩张问题[J]. 河海大学学报, 1996, 24(4): 65-70.

[39]周小平, 钱七虎, 杨海清. 深部岩体强度准则[J]. 岩石力学与工程学报, 2008, 27(1): 117-123.

[40]汪斌, 朱杰兵, 郎爱清, 等. 高应力下岩石非线性强度特性的试验验证[J], 岩石力学与工程学报. 2010. 29(3): 542-548.

[41]Kumar,Sanjay.Analysis of subsidence and stability of pillars in a coal mine[D]. Rourkela: National Institute of Technology Rourkela, 2015.

[42]Wattimena R K,Kramadibrata S, Sidi I D, et al. Developing coal pillar stability chart usinglogistic regression[J]. Intermational Journal of Rock Mechanics and Mining Sciences, 2013, 58: 55-60.

[43]Zhang J X, Huang P, Zhang Q, et al. Stability and control of room mining coal pillars-—takingroom mining coal pillars of solid backfill recovery as an example[J]. Journal of Central South University, 2017, 24(05): 1121- 1132.

[44]Ghasemi E, Ataei M, Shahriar K. Prediction of global stability in room and pillar coal mines[J]. Natural Ha7ards, 2014, 72(02): 405- 422.

[45]William G P, Mark K L, Heather E L, et al. User-friendly finite element design of mainentries, barrier pillars, and bleeder entrics[J]. International Journal of Mining Science and Technology, 2018, 28(01): 3- 10.

[46]Chen L W. Feng X Q. Xie W P, et al. Using a fluid-solid coupled numerical simulation todetermine a suitable size for barrier pillars when mining shallow coal seams beneath anunconsolidated confined aquifer [J]. Mine Water and the Environment, 2017, 36(01): 67-77.

[47]Zhao Y L, Luo S L, Wang Y X, et al. Numerical analysis of Karst water inrush and a criterion for establishing the width of water-resistant rock pillars[J]. Mine Water and the Environment, 2017, 36(04): 508-519.

[48]O.Vardar, Tahmasebinia F, Zhang C, et al. A review of uncontrolled pillar failures [J]. Procedia Engineering, 2017, 191: 631-637.

[49]Ashok Jaiswal, B.K.Shrivastva. Numerical simulation of coal pillar strength[J]. Intermational Journal of Rock Mechanics and Mining Sciences, 2008, 46(04): 779-788.

[50]B.A.Poulsen. Coal pillar load calculation by pressure arch theory and near field extractionratio[J]. International Journal of Rock Mechanics Mining Sciences, 2010, 47(07): 1158-1165.

[51]Petho S.Z. Managing the geotechnical and mining issues surrounding the extraction of smallpillars at shallow depths at Xstrata Coal South Africa[J]. Journal of the Southern African Instituteof Mining and Metallurgy, 2012, 112(02): 105-118.

[52]Guy Reed, Kent Mctyer, Russell Frith. An assessment of coal pillar system stability criteria based on a mechanistic evaluation of the interaction between coal pillars and the overburden[J]. International Journal of Mining Science and Technology, 2017, 27(01):9-15.

[53]Musa Adebayo Idris, David Saiang, Erling Nordlund.Stochastic assessment of pillar stability at Laisvall mine using artificial neural network[J]. Tunnelling and Underground Space Technologyincorporating Trenchless Technology Research, 2015, 49: 307-319.

[54]Najafi M, Jalali S E, Bafghi A, et al.Prediction of the confidence interval for stability analysisof chain pillars in coal mines[J]. Safety Science, 2011, 49(05): 651-657.

[55]钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2003.

[56]谢广祥, 杨科, 刘全明. 综放面倾向煤柱支承压力分布规律研究门[J]. 岩石力学与工程学报, 2006, (03) : 545-549.

[57]刘长武, 丁开旭. 论井下隔水煤柱承压破坏的临界尺寸[J]. 煤炭学报, 2001 ,26(06):632-636.

[58]胡绞脐, 胡耀青.老空区边界防水煤(岩)柱留设的研究[J]. 太原理工大学学报, 2016, 47(02) :178-182.

[59]师维刚. 相邻及孤岛工作面防水隔离煤柱留设理论基础研究[D]. 西安:西安科技大学, 2015.

[60]师维刚, 张嘉凡, 张慧梅, 等. 防水隔离煤柱结构分区及合理宽度确定[J]. 岩石力学与工程学报, 2017, (05): 191-201.

[61]刘洋. 基于抛物线型强度准则的巷道煤柱塑性区宽度确定[J]. 煤炭工程, 2016(12): 92-95.

[62]肖华, 杨志洋, 崔勤利, 等. 闭坑矿井采空区积水对防水煤柱稳定性的影响门[J]. 煤炭科技, 2014(04):105-107.

[63]王胜军, 裴道奇, 董仁浩, 等. 水浸条件下煤柱稳定性分析方法[J]. 煤炭科技,2014(04): 74-76.

[64]李建华. 煤矿地下水库储水浸泡对煤柱坝体强度影响的试验研究[J]. 煤矿开采, 2018, 23(03) : 15-17 9.

[65]陈小绳.大采高大跨度工作面护巷煤柱留设宽度合理性分析[J]. 煤矿安全, 2014, 45(01): 47-50.

[66]徐思朋, 茅献彪, 张东. 升煤柱塑性区的弹粘塑性理论分析[J]. 辽宁工程技术大学学报, 2006, 25(02) :194-196.

[67]屠洪盛, 居世浩, 白庆升, 等. 急倾斜煤层工作面区段煤柱失稳机理及合理尺寸[J]. 中国矿业大学学报, 2013, 42(01): 6-1130.

[68]张斌, 王存文, 谭洪山, 等. 浅埋深煤层长壁式复采区段煤柱稳定性研究[J]. 煤炭科学技术, 2015, 43(01): 25-27 32.

中图分类号:

 TD327.3    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式