- 无标题文档
查看论文信息

题名:

 带式输送机用分布式柔性连接多电机转速协调控制策略研究    

作者:

 孙文浩    

学号:

 22206227103    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085800    

学科:

 工学 - 能源动力    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 智能矿山运输技术    

导师姓名:

 周奇勋    

导师单位:

 西安科技大学    

提交日期:

 2025-06-16    

答辩日期:

 2025-06-05    

外文题名:

 Research on speed coordination control strategy of distributed flexible connection multi motor for belt conveyor    

关键词:

 带式输送机 ; 多电机协调控制 ; 自抗扰控制 ; 永磁直驱    

外文关键词:

 Belt conveyor ; Multi motor coordinated control ; Active disturbance rejection control ; Permanent magnet direct drive    

摘要:

煤炭工业规模不断扩大,物料运输距离和载荷量显著增加。传统驱动电机功率的提升虽能满足运输需求,但存在张力超限、响应慢等问题。多永磁直驱电机分布式驱动成为矿用输送机改造的潜在方向。然而,永磁直驱电机因惯量较大导致转速响应滞后,且多电机同步控制难度高。因此,本文聚焦分布式永磁直驱带式输送机,研究自抗扰控制算法及多电机转速协同控制策略。

针对永磁直驱电机惯量较大导致调速响应存在滞后的问题,分析PI控制器在电机转速响应以及抗干扰性能方面暴露出的缺陷,由于经典自抗扰控制器参数调节繁琐、难以适应复杂多变的工作环境,本文提出了一种基于改进线性自抗扰控制器的调速控制方案。运用线性自抗扰控制器能够显著优化调速性能,增强抗干扰水平,并简化参数调整流程。在此基础上,融入径向基神经网络算法,利用其非线性映射能力和快速学习特性,构建非线性映射关系,动态调整控制器参数,提高控制器对复杂工况的适应能力和响应速度,确保在不同工况下均能稳定运行。借助仿真平台,对传统PI、经典自抗扰以及改进线性自抗扰控制器的动态响应特性展开对比分析。结果表明,经过改进的线性自抗扰控制器在系统稳定性与抗扰动能力上有明显优势。

针对柔性连接多电机同步控制系统中显著的扰动问题,分析传统耦合控制在抗干扰性能方面的缺陷,提出了一种基于扩张状态观测器的多电机协同控制策略。通过线性自抗扰理论设计耦合补偿器,消除多电机系统中因耦合效应产生的转速波动与同步误差,并借助仿真平台对不同耦合模式的同步效果进行了对比分析。仿真结果表明,相邻耦合控制在同步性能方面展现出优势。为进一步验证该策略在带式输送机应用场景中的同步表现,对相邻电机间的输送带进行了抛物线建模,分析张力、长度与垂度之间的相互作用规律,并提出了一种基于相邻电机转速差的张力控制方法。在此基础上,进一步开展了张力控制仿真实验。实验结果表明,所设计的控制策略能够显著提升多电机系统的同步精度,同时有效降低输送带张力波动。

搭建实验平台、设计控制器硬件并进行验证。实验结果表明,在空载启动、满载启动及张力控制等多种工况下,五台永磁直驱电机展现出良好的跟随性与同步性能,证实了所提控制策略的有效性。该研究为永磁直驱技术在多电机分布式驱动矿用带式输送机中的应用提供了重要的理论支持与实践指导。

外文摘要:

With the continuous expansion of the production scale of the coal industry, the material transportation distance and load increase significantly. Although the power increase of the traditional drive motor can meet the transportation demand, it is easy to cause the belt tension to exceed the design threshold, and its speed response ability is insufficient. With the multi-point drive structure, the distributed drive of multi permanent magnet direct drive motor is expected to become the key direction of the long-distance and large capacity transformation of mining belt conveyor in the future. However, the speed response of permanent magnet direct drive motor lags behind due to its large inertia, and the speed synchronization control complexity of multiple motors is high. In addition, as a flexible connecting medium, the conveyor belt makes the speed fluctuation transmit on the conveyor belt in the form of waves, resulting in significant system disturbance. Therefore, this paper focuses on the distributed permanent magnet direct drive belt conveyor, and studies the active disturbance rejection control algorithm and multi motor speed collaborative control strategy.

Aiming at the problem that the speed control response of permanent magnet direct drive motor lags due to the large inertia, the defects of PI controller in motor speed response and anti-interference performance are analyzed. Because the parameter adjustment of classical active disturbance rejection controller is cumbersome and difficult to adapt to complex and changeable working environment, a speed control scheme based on improved linear active disturbance rejection controller is proposed in this paper. The linear active disturbance rejection controller is used to effectively improve the speed response speed and anti-interference level, and simplify the parameter adjustment. On this basis, the radial basis function neural network algorithm is integrated to realize the dynamic optimization and real-time update of key parameters of the controller to deal with complex working conditions. With the help of simulation platform, the dynamic response characteristics of traditional PI, classical ADRC and improved linear ADRC are compared and analyzed. The results show that the improved linear active disturbance rejection controller has obvious advantages in system stability and anti disturbance ability.

Aiming at the significant disturbance problem in flexible connected multi motor synchronous control system, a multi motor cooperative control strategy based on extended state observer is proposed in this paper. The coupling compensator is designed by using the linear active disturbance rejection theory, and the synchronization effects of different coupling modes are compared and analyzed by using the simulation platform. The simulation results show that the adjacent coupling control has advantages in synchronization performance. In order to verify the effectiveness of this strategy for tension control, the parabolic model of the conveyor belt between adjacent motors is established in this paper, and the interaction law among tension, length and sag is analyzed, and a tension control method based on the speed difference of adjacent motors is proposed. On this basis, the tension control simulation experiment is further carried out. The experimental results show that the designed control strategy can significantly improve the synchronization accuracy of the multi motor system, and effectively reduce the belt tension fluctuation.

The experimental platform was built, and the controller hardware was designed and verified. The experimental results show that the five permanent magnet direct drive motors show good tracking and synchronization performance under various conditions, such as no-load start, full load start and tension control, which verifies the effectiveness of the proposed control strategy. The research provides important theoretical support and practical guidance for the application of permanent magnet direct drive technology in multi motor distributed drive mining belt conveyor.

参考文献:

[1]王刚. 探讨智慧煤矿与智能化开采关键核心技术[J]. 中国战略新兴产业, 2025, (05): 53-55.

[2]石生慧, 王会朦. 现代智能化煤矿开采技术研究[J]. 内蒙古煤炭经济, 2025, (02): 65-67.

[3]李浩田, 高理鹏, 侯成科. 智慧煤矿与智能化开采关键核心技术研究[J]. 内蒙古煤炭经济, 2024, (18): 55-57.

[4]Zeng B , Yang X , Hu P , et al. Towards a digitally enabled intelligent coal mine integrated energy system: Evolution, conceptualization, and implementation [J]. Sustainable Energy Technologies and Assessments, 2025, 73 104128-104128.

[5]姜俊博. 现代矿山安全工程管理策略与方法——评《面向智慧矿山的煤矿安全知识可视化研究》[J]. 中国安全科学学报, 2024, 34(08): 247.

[6]Wang P , Rui X , Wang G , et al. Complex Modal Analysis of a Resilient Supported Conveyor Belt: Enhancement of Numerical Stability by Reduced Complex Transfer Matrix Method [J]. Journal of Vibration Engineering & Technologies, 2025, 13 (2): 192-192.

[7]黄洪华, 李军, 闫明. 高性能驱动系统在复杂工况下下运带式输送机的实现[J]. 煤矿机械, 2025, 46(01): 161-164.

[8]姬红刚. 袁大滩煤矿主斜井带式输送机提能改造设计[J]. 煤矿机械, 2025, 46(01): 143-146.

[9]Static & Fracture Analysis and Design Optimization of Drive Shaft in Long Distance Belt Conveyor [J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8 (11): 3071-3075.

[10]刘飞. 长距离带式输送机变频驱动控制技术[J]. 现代制造技术与装备, 2024, 60(11): 186-188.

[11]王琼. 长距离带式输送机多驱协调电气制动技术研究[J]. 自动化应用, 2024, 65(14): 123-125+156.

[12]吕东玉. 带式输送机中的张紧模块设计[J]. 中国新技术新产品, 2025, (02): 79-81.

[13]秦翥. 带式输送机智能化发展现状研究[J]. 煤矿机械, 2025, 46(01): 73-76.

[14]He D , Liu X , Zhong B . Sustainable belt conveyor operation by active speed control [J]. Measurement, 2020, 154 107458-107458.

[15]Bian J. Optimum design and modal analysis of reducer worm drive for belt conveyor by matlab and ansys[C]. 2019 IEEE 4th Advanced Information Technology Electronic and Automation Control Conference (IAEAC), 2019, 1: 2614-2619.

[16]王月宏, 付萌萌, 杨星晨. 超长距离带式输送机在我国煤矿的应用[J]. 内蒙古煤炭经济, 2021, (24): 153-155.

[17]Wang P , Rui X , Wang G , et al. Complex Modal Analysis of a Resilient Supported Conveyor Belt: Enhancement of Numerical Stability by Reduced Complex Transfer Matrix Method [J]. Journal of Vibration Engineering & Technologies, 2025, 13 (2): 192-192.

[18]张应, 刘彩霞, 徐礼学. 带式输送机张力检测装置的研制与应用[J]. 山东工业技术, 2024, (06): 122-127.

[19]王宏杰. 矿井带式输送机防撕裂装置的研究与应用[J]. 机械管理开发, 2024, 39(12): 128-129+132.

[20]王建东. 马莲台煤矿主井大倾角钢绳芯胶带输送机设计[J]. 煤炭工程, 2015, 47(08): 14-15+18.

[21]杨小林, 葛世荣, 祖洪斌, 等. 带式输送机永磁智能驱动系统及其控制策略[J]. 煤炭学报, 2020, 45: 1-13.

[22]肖雄, 王浩丞, 武玉娟, 等. 基于双滑模估计的主从结构共轴双电机模型预测直接转矩控制无速度传感器控制策略[J]. 电工技术学报, 2021, 36(5): 1014-1026.

[23]史婷娜, 辛雄, 夏长亮. 采用虚拟电机的改进偏差耦合多电机同步控制[J]. 中国电机工程学报, 2017, 37(23): 7004-7013+7092.

[24]M. C. Zhao, Q. W. Wang, Y. W. Wang, et al. Multi-motor cooperative control strategy for speed synchronous control of construction platform[J]. Electronics, 2023, 11(24): 1-17.

[25]V. J. Stil, T. Varga, T. Bensic, et al. A survey of fuzzy algorithms used in multi-motor systems control[J]. Electronics, 2020, 9(11): 1-14.

[26]付涛. 基于主从控制的光伏水泵群控系统的研究[D]. 华东交通大学, 2023.

[27]李思毅. 永磁直驱电机四象限运行控制策略研究[D]. 哈尔滨工业大学, 2022.

[28]朱昌林, 涂群章, 蒋成明, 等. 多电机速度同步系统中程偏差耦合控制[J]. 电气传动, 2025, 55(01): 9-17.

[29]吴宇航, 许鸣珠. 分布式驱动电动汽车多电机系统改进型环形耦合控制[J]. 石家庄铁道大学学报(自然科学版), 2023, 36(03): 112-118.

[30]Fan B , Zhou H , Wang J , et al. Torque balancing and coordination control based on improved deviation coupling for multi-motor rigid connection systems [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46 (11): 678-678.

[31]田昊, 宋玉宝, 曹清媛, 等. 多轴同步系统模糊补偿虚拟主轴偏差耦合控制[J]. 电机与控制应用, 2022, 49(07): 14-21.

[32]陆哲. 电动汽车前后桥双开关磁阻电机转速同步控制方法研究[D]. 中国矿业大学, 2023.

[33]Xuguang Z , Xiaojiang S , Longbiao Z , et al. Synchronous control system of virtual main-axis based on extended sliding mode disturbance observer [J]. Proceedings of the Institution of Mechanical Engineers, 2023, 237 (4): 596-607.

[34]周奇勋, 刘帆, 吴紫辉, 等. 永磁直驱电机转矩与定子磁链模型预测控制预测误差补偿方法[J]. 电工技术学报, 2022, 37(22): 5728-5739.

[35]刘国海, 陈仁杰, 张多, 等. 两电机调速系统的神经网络逆无模型自适应鲁棒解耦控制[J]. 中国电机工程学报, 2019, 39(03): 868-874+965.

[36]Q. X. Zhou, F. Liu, H. Gong. Robust three-vector model predictive torque and stator flux control for PMSM drives with prediction error compensation[J]. Journal of Power Electronics, 2022, 22(11): 1917-1926.

[37]Xiao L , Song Z . Compensation adaptive robust control for a linear motor–driven stage system with state and input constraints based on gated recurrent unit architecture [J]. Transactions of the Institute of Measurement and Control, 2025, 47 (5): 886-895.

[38]周雪松, 潘俊清, 马幼捷, 等. 基于滑模变结构的自抗扰异步电机矢量控制[J]. 计算机仿真, 2023, 40(03): 316-319+535.

[39]黄成成, 金海, 鲁文其. 基于Super-Twisting无位置滑膜观测器的永磁直驱电机控制[J]. 电子科技, 2023, 36(11): 8-13.

[40]Wang Q .An Intelligent System of Permanent Magnet Synchronous Using Synovial Motor Control and PID Motor Control for EoT Computing: a Comparative Simulation Study[J]. Mobile Networks and Applications, 2023, 28(6): 2215-2223.

[41]于艳君, 崔明恺, 陈叹辞, 等. 基于模糊自适应转速调节器的绕组切换型电机控制[J]. 中国电机工程学报, 2022, 42(23): 8708-8718.

[42]张磊, 鲍久圣, 郝建伟, 等. 永磁直驱带式输送机模糊自抗扰偏差耦合多电机控制策略[J]. 中国机械工程, 2024, 35(11): 2071-2081.

[43]Yilmaz M B , Unver S , Selim E , et al. Fuzzy Logic based adaptive control of robot manipulators driven by BLDC Motors [J]. Journal of the Franklin Institute, 2025, 362 (4): 107528-107528.

[44]孙元杰, 周士贵, 张可程. 基于新型双矢量模型预测的永磁直驱电机控制[J]. 电气自动化, 2021, 43(03): 36-38+54.

[45]杨家尧. 动态权重的永磁直驱电机模型预测控制策略研究[D]. 西安理工大学, 2023.

[46]Guo D, Yang J, Zhou H, et al. Dual-Vector Model Predictive Current Control with Entire-Time-Domain Current Harmonic Optimization and Robust Control Strategy [J]. Energies, 2025, 18 (5): 1117-1117.

[47]张淑芳, 宋香明, 朱彬华. 结合改进PSO-BP神经网络的无刷直流电机控制[J]. 南开大学学报(自然科学版), 2021, 54(04): 62-67.

[48]胡嘉俊. 基于BP神经网络的永磁直驱电机控制策略研究[D]. 南昌大学, 2021.

[49]Jing W, Li M, Chen Y, et al. Fixed-time control of multi-motor nonlinear systems via adaptive neural network dual sliding mode [J]. Information Sciences, 2025, 708 122061-122061.

[50]孙金涛. 基于自适应算法的特种车辆低压无刷直流电机控制方法[J]. 电工技术, 2023, (01): 55-57+71.

[51]吴宋林. 基于内模自适应控制的永磁直驱电机控制方法研究[D]. 沈阳工业大学, 2023.

[52]Wang Y, Jiao Y, Chen H, et al. Adaptive constraint control based peak-attenuated disturbance observer for the electric vehicle used permanent magnet synchronous motor [J]. International Journal of Electrical Power and Energy Systems, 2025, 166 110579-110579.

[53]张世维, 林莘, 张大鹏, 等. 基于模糊RBF神经网络PID算法的无刷直流电机控制[J]. 电工技术, 2021, (02): 16-18+52.

[54]陈哲明, 陶军, 庄威洋, 等. 改进单神经元网络PID算法下的车用轮毂电机控制系统仿真[J]. 重庆理工大学学报(自然科学), 2022, 36(05): 13-19.

[55]李木子. 皮带机直驱滚筒永磁直驱电机控制系统的研究[D]. 安徽理工大学, 2021.

[56]李俊金. 井下输煤皮带机直驱永磁电机控制策略研究[D]. 青岛科技大学, 2024.

[57]郭殿林, 李硕. 基于改进型LADRC的皮带机外转子永磁直驱调速控制策略的研究[J]. 中国矿业, 2024, 33(S2): 221-226.

[58]刘佳, 顾毅君, 李朋, 等. 基于自抗扰的永磁直驱伺服电机扰动抑制技术研究[J]. 微特电机, 2023, 51(09): 39-44.

[59]卜令超. 长距离带式输送机运行过程建模与优化控制[D]. 中国矿业大学, 2022.

[60]陈洪月, 许若镛, 毛君. 考虑温度影响的钢丝绳橡胶输送带粘弹性模型建立及压陷阻力分析[J]. 机械强度, 2020, 42(03): 680-687.

[61]苏金虎, 孟文俊, 张骉. 输送带压陷阻力的推导及数值分析[J]. 煤矿机械, 2020, 41(11): 9-11.

中图分类号:

 TM351    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式