- 无标题文档
查看论文信息

论文中文题名:

 噪声对掘进司机危险感知影响研究    

姓名:

 樊恒子    

学号:

 18202217038    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085236    

学科名称:

 工学 - 工程 - 工业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程    

研究方向:

 人因与安全管理    

第一导师姓名:

 李红霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Research on the Influence of Noise on the Danger Perception of Tunneling Drivers    

论文中文关键词:

 掘进面噪声 ; 掘进司机 ; 危险感知 ; 注意力 ; SVM    

论文外文关键词:

 tunneling surface noise ; tunneling driver ; danger perception ; attention    

论文中文摘要:

~煤矿企业属于劳动密集型行业,井下恶劣复杂的环境条件与繁重且单一化的劳动易使矿工注意力下降,导致不安全行为。矿井掘进面属于煤矿危险事故频发区,掘进司机在作业过程中受到体力和脑力的双重负荷。目前,在煤矿安全领域,研究者多致力于噪声环境对矿工的影响以及矿工危险感知方面的研究,但专门针对掘进司机这类特殊工种的研究相对较少。因此,本文对掘进司机在掘进面噪声环境下的危险感知能力进行研究,探讨掘进面噪声环境下掘进司机的各项心理、行为、眼动与生理指标的变化,分析掘进司机危险感知能力受掘进面噪声影响的情况,期望将掘进面噪声控制及预防纳入到煤矿安全管理体系之中,对煤矿安全管理提供借鉴。
本文设计了两个实验,实验一为掘进面噪声对掘进司机注意力影响实验。运用舒尔特方格软件与Axure仿真模拟掘进操作系统,通过还原真实场景,采集掘进司机的反应时长、错误次数、超时次数与正确率4个指标进行统计分析。实验二为掘进面噪声对掘进司机危险感知影响实验。收集煤矿掘进司机在日常生产作业中含有一定危险性与危险点的场景,在眼动仪上随机呈现静态漫画(有危险)与真实场景(有危险和无危险)三类图片,被试根据图片所呈现的线索判断该场景是否存在危险,使用Tobii T60XL眼动仪与Biopac多导生理仪采集掘进司机对危险场景的心理、行为、眼动、生理等各项指标进行分析。最后,将掘进面危险进行分级并运用支持向量机(SVM)对实验的样本数据进行训练。
结果表明:(1)对比两种实验环境下掘进司机的各项实验指标,发现掘进司机的注意力、反应力在有无掘进面噪声环境下差异显著,但掘进司机的操作正确率在有无掘进面噪声环境下差异不显著。(2)掘进面噪声会降低掘进司机的危险感知能力。有掘进面噪声时,掘进司机发现危险点的时间与注视点个数增加、首个注视点到下次鼠标点击的时间增加、心率与心率变异性会发生明显变化,但血压的变化不显著。由量表数据可得:注意力量表反映掘进司机在生产作业过程中自身的注意力与感知能力依旧存在差异;主诉症状量表反映掘进面噪声能诱发掘进司机的疲劳症状;情绪量表反映有掘进面噪声下掘进司机愤怒、焦虑、恐惧等情绪的变化较为显著。(3)选取的实验指标对掘进司机危险感知能力的预测是可行的。

论文外文摘要:

~Coal mining enterprises are labor-intensive industries. The harsh and complex environmental conditions and heavy and singular labor in underground mines can easily reduce the attention of miners and lead to unsafe behaviors. The mine tunnel face belongs to the area where dangerous accidents frequently occur in coal mines, and the tunneling driver is subjected to the dual load of physical and mental strength during the operation. At present, in the field of coal mine safety, researchers are mostly devoted to the research on the impact of noise environment on miners and the miners’ hazard perception, but there is less research on special types of work such as tunneling drivers. Therefore, this paper studies the danger perception ability of the tunneling drivers under the noise environment of the tunnel surface, discusses the changes of various psychological, behavioral, eye movement and physiological indicators of the tunneling drivers under the noisy environment of the tunnel surface, and analyzes the impact of the tunneling driver’s danger perception ability on the tunnel. With regard to the impact of surface noise, it is expected that the control and prevention of tunneling surface noise will be incorporated into the coal mine safety management system to provide a reference for coal mine safety management.
Two experiments are designed in this paper. The first experiment is an experiment on the influence of tunneling surface noise on the attention of tunneling drivers. Using Schulte Grid software and Axure to simulate the tunneling operating system, by restoring the real scene, four indicators including the reaction time, the number of errors, the number of timeouts and the correctness of the tunneling drivers are collected for statistical analysis. The next experiment is an experiment on the impact of tunneling surface noise on the danger perception of tunneling drivers. Collect scenes with certain dangers and dangerous points in the daily production operations of coal mine boring drivers, and randomly present three types of pictures of static cartoons (dangerous) and real scenes (dangerous and non-dangerous) on the eye tracker. Participants are based on the pictures. The clues presented are used to judge whether the scene is dangerous. Tobii T60XL eye tracker and Biopac physiological multi-conductor are used to collect and analyze the psychology, behavior, eye movement, physiology and other indicators of the dangerous scene. Finally, the hazards of the tunneling face are classified and the support vector machine (SVM) is used to train the sample data of the experiment.
The results show that: (1) Comparing the various experimental indicators of the tunneling drivers in the two experimental environments, it is found that the attention and reaction of the tunneling driver are significantly different under the noise environment of the tunneling surface, but the accuracy of the tunneling driver's operation is The difference is not significant under the noise environment of the tunneling face. (2) The noise of the tunneling surface will reduce the tunneling driver's perception of danger. When there is tunneling surface noise, the time for the tunneling drivers to find the dangerous point and the number of fixation points increase, and the time from the first fixation point to the next mouse click increases. The heart rate and heart rate variability will change significantly, but the blood pressure will not change significantly. The scale data can be obtained: the attention strength scale reflects that there are still differences in the attention and perception abilities of the tunneling drivers during the production process; the main complaint symptom scale reflects that the noise of the tunneling surface can induce the fatigue symptoms of the tunneling driver; the emotion scale reflects that there are The anger, anxiety, fear and other emotions of the tunneling driver under the noise of the tunneling surface were changed significantly. (3) The selected experimental indicators are feasible to predict the risk perception ability of tunneling drivers.

参考文献:

[1]翁涛.中国煤矿安全现状分析及应对策略讨论[J].能源与节能,2016(05):50-51.

[2]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故中的人因及度量[J].科技导报,2005(10):

41-44.

[3]景国勋,王远声,郭绍帅,张胜旗.短期噪声暴露对作业人员注意力的影响研究[J].河南理工大学学报(自然科学版),2019,38(02):8-13.

[4]Ye-jin Kim,Jeong-wook Jang,Tae-myoung Yin. Development of Railway Safety Support System Using Railway-operating Data[J].2018,11(2).

[5]David J.Hawke,Julie C.S.Brown,Sarah J.Bury.The prevention and detection of human error in ecological stable isotope analysis[J].Methods in Ecology and Evolution,2018,9(12).

[6]Yang Jun,Dai Xinyu,Chen Wanqing,Yang Ming,Wang Wenlin. A success-oriented analysis technique for operational risk supervision in sea-borne nuclear power plants[J]. Elsevier B.V.,2018,340.

[7]Emre Akyuz,Metin Celik,Ilker Akgun,Kadir Cicek. Prediction of human error probabilities in a critical marine engineering operation on-board chemical tanker ship: The case of ship bunkering[J]. Safety Science,2018,110.

[8]段在鹏,黄月铃,黄萍.新入职起重机司机操作失误研究[J].安全与环境学报,2019,19

(05):1649-1655.

[9]Lockwood Justin M,Thomas Jacob,Martin Sara,Wathen Beth,Juarez-Colunga Elizabeth,Peters Lisa,Dempsey Amanda,Reese Jennifer. AutoPEWS:Automating Pediatric Early Warning Score Calculation Improves Accuracy Without Sacrificing Predictive Ability.[J].Pediatric quality & safety,2020,5(2).

[10]Maslach C.Jackson SE.The measurement of experienced burnout[J].Journal of Occupational Behavior,1981,2:99-113.

[11]Swain A D,Guttmann H E.Handbook of human- reliability analysis with emphasis on nuclear power plant applications[M].U.S:Nuclear Regulatory Com-mission Press,1980.

[12]Suraji A.,Duff A. R.,Peckitt S J.Development of causal model of construction accident causation[J].Journal of Construction Engineering and Management,2001,127(4): 337-344.

[13]Cao Q,Yang X.Modeling the management system of coal miner's unsafe behavior[C]//2011 International Conference on E-Business and E-Government(ICEE). IEEE,2011:1-4.

[14]HyungJun Kim,Seunghwan Kim,Jinkyun Park,Eun-Chan Lee,Seung Jun Lee.The effect of communication quality on team performance in digital main control room operations[J]. Nuclear Engineering and Technology,2020,52(6).

[15]Reason J.Managing the risks of organizational accidents[M].USA:Ashgate,1997.

[16]Abdelhamid T.S.,Everett J.G.,Identifying root causes of construction accidents[J].Journal of Construction Engineering and Management,2000,126(1):52-60.

[17]Hinze J.Safety Incentives:Do They Reduce Injuries[J].Practice Periodical on Structural Design&Construction,2002,7(2):81-84.

[18]Johnson W G.Mort the management oversight and risk tree[J].Journal of afety Research, 1975(2):4-57.

[19]Reason J,Manstead A,Stradling S,et al.Errors andViolations on the Roads:A Real Distinction[J].Ergo-nomics,1990,33(10-11):1315-1332.

[20]Yilmaz V,Celik HE.A Model for Risky Driving Atti-tudes in Turkey[J].Social Behavior and Personality:an International Journal,2004,32(8):791-796.

[21]赵淑芳.“四种危险”的警示意义、形成原因及防范途径[J].党政干部学刊,2017(03):

22-25.

[22]徐清柱.安全三级防控管理在高速公路改扩建工程中的应用[J].北方交通,2017(05):

159-161+164.

[23]Hunter DR.Risk Perception Among General AviationPilots[J].The International Journal of Aviation Psy-chology,2006,16(2):135-144.

[24]Tova R.,Roi M.,Yotam R.,et al.Hazard perception test for pedestrians[J].Accident Analysis & Prevention,2015,79:160–169.

[25]Melamed S,Fride Y,Froom P.The joint effect of noise exposure and job complexity on distress and injury risk among men and women:the cardiova-scular occupational risk factors determination in Israel study[J].Environmental Research,2004,46(10):1023-1032.

[26]Picardm,Girardsa,Simardm,etal.Associa-tion of work-related accidents with noise exposure in the workplace and noise-induced hearing loss based onthe experience of some 240,000 person-years of obser-vation[J].Accid.Anal.Prev,2008,40(5):1644-1652.

[27]Korfali S L,Massound M.Assessment of Community Noise Problem in Greater Beirut Area,Lebanon[J].Environmental Monitoring and Assessment,2003,84(3):203~218.

[28]Sasaki H,Todorokihara M,Ishida T,et al.Effect ofnoise on the contrast detection threshold in visual perception[J].Neuroscience Letters,2006,408(2):94-97.

[29]田水承,李红霞,王莉,陈婷.从三类危险源理论看煤矿事故的频发[J].中国安全科学学报,2007(01):10-15+177+179.

[30]田水承.第三类危险源辨识与控制研究[D].北京:北京理工大学,2001.

[31]程卫民,周刚,王刚,刘向升.人不安全行为的心理测量与分析[J].中国安全科学学报,2009,19(06):29-34.

[32]李乃文,牛莉霞.矿工工作倦怠、不安全心理与不安全行为的结构模型[J].中国心理卫生杂志,2010,24(03):236-240.

[33]郭伏,杨学涵.人因工程学[M].沈阳:东北大学出版社,2001.

[34]邓明明,孙林岩,孙林辉,崔凯.煤矿工人异常心理、工作倦怠与事故倾性研究[J].人类工效学,2014,20(01):26-30.

[35]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故中的人因及度量[J].科技导报,2005(10):41-44.

[36]付净,傅贵,聂方超,刘虹,王泽恒.煤矿事故不安全动作原因识别及作用研究[J].煤矿安全,2020,51(01):242-245.

[37]汪伟忠.煤矿特种作业人员安全能力分析及优化配置[D].中国矿业大学,2014.

[38]方东平,陈扬.建筑业安全文化的内涵表现评价与建设[J].建筑经济, 2005(2):41-45.

[39]唐智慧,程杰,方争楠.基于FSDT的新老驾驶人危险感知差异性致因研究[J].西南交通大学学报,2013,第3期:532-538.

[40]肖泽元.矿工风险感知与不安全行为的关系研究[D].西安:西安科技大学,2014.

[41]Alex A.,Hallowell M. R.,Skaggs M.,et al.Empirical measurement and improvement of hazard recognition skill[J].Safety Science,2017,93:1-8.

[42]兰婷.新老驾驶员危险感知差异性实验研究[D].成都:西南交通大学,2013.

[43]许文利.不同风险感知效用驾驶人视觉行为及特性分析[D].昆明理工大学,2017.

[44]许文利,秦雅琴,隋英楠.风险驾驶情境下驾驶行为与风险意识的关系研究[J].人类工效学,2015,21(06):29-33.

[45]赵一鸣,陈山松,成小如,刘清波.噪声个体计量仪的工作原理及其在噪声暴露评价中的应用[J].中华预防医学杂志,2000(04):47-49.

[46]张国祥,2010年高平市部分煤矿地面工作场所噪声危害现状调查[J].预防医学论坛, 2010,16(8):726-727.

[47]王洪飞,王会兵,马强.噪声对人体的危害及综合防治研究[J].华南国防医学杂志,2002, 16(1):30-34.

[48]郑倩.煤矿设备噪声对矿工的危害及防治[J].现代商贸工业,2014,26(07):180-181.

[49]袁聚祥.范雪云,王广增.煤矿职业危害预防与控制指南[M].北京:北京大学医学出版社2007.

[50]刘卫东,多彩虹,崔玉芳,等.某煤矿井下噪声危害现状调查[J].职业卫生与病伤,2008,23

(6):342-244.

[51]景国勋,郭绍帅,王远声,周霏.基于有限元法的综采工作面噪声场仿真模拟与试验研究[J].安全与环境学报,2019,19(06):1978-1983.

[52]景国勋,吕鹏飞,周霏,赵攀飞.基于E-Prime的煤矿噪声对矿工反应时与出错数的影响效应研究[J].安全与环境学报,2018,18(06):2285-2289.

[53]景国勋,王远声,周霏,郭绍帅.短期噪声暴露对作业人员心率的影响[J].工业安全与环保,2019,45(08):70-73.

[54]王勇.瓦斯发电厂噪声控制研究[D].贵州大学,2012.

[55]Jeng-Chung Chen,Vincent F.Yu.Relationship between human error intervention strategies and unsafe acts:The role of strategy implement ability[J].Elsevier Ltd,2018,69.

[56]Yochan Kim,Jinkyun Park,Wondea Jung. A classification scheme of erroneous behaviors for human error probability estimations based on simulator data[J].Elsevier Ltd,2017,163.

[57]Sun Yeong Choi,Jinkyun Park,Yochan Kim,Seunghwan Kim,Wondea Jung.A study for Unsafe Act classification under crew interaction during procedure-driven operation[J]. Elsevier Ltd,2016,96.

[58]R Brian Hendrix.Task Training:How MSHA Cites Operators for Unsafe Acts[J].Rock Products,2016,119(8).

[59]Wang Jianhao,Fu Gui,Yan Mingwei.Analysis of a catastrophic commercial coach crash based on an improved accident causation model (ACM):Causes classification and lessons learned.[J].Pubmed,2020.

[60]Jaiyeop Lee,Ilho Kim,Seoil Chang.Analysis of highway reflection noise reduction using transparent noise barrier types[J].2015,20(4).

[61]全国信息与文献标准化技术委员会.企业职工伤亡事故分类标准:GB6441-1986[S].北京:中国标准出版社,1986.

[62]葛以忠.企业安全管理[M].南京:江苏人民出版社,1985.

[63]郭红领,刘文平,张伟胜.集成BIM和PT的工人不安全行为预警系统研究[J].中国安全科学学报,2014,24(4):104-109.

[64]happell S A,Wiegmann D A. The Human Factors Analysis and Classification System-HFACS[R].The Report of Office of Aviation Medicine Federal Aviation Administration,2001:1-19.

[65]Wiegmann D A,Shappell S A.A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System[M].Burlington:Ashgate Publishing Ltd,2003.

[66]毛海峰.有意违章行为动因分析与控制对策探讨[J].中国安全科学学报,2003,13(2):24 -27.

[67]陈红,祁慧,汪鸥,等.中国煤矿重大事故中故意违章行为影响因素结构方程模型研究[J].系统工程理论与实践,2007(8):127-136.

[68]李乃文,徐梦虹,牛莉霞.基于ISM和AHP法的矿工习惯性违章行为影响因素研究[J].中国安全科学学报,2012,22(8):22-28.

[69]王丹.矿工违章行为形成、演化与治理研究[D].阜新:辽宁工程技术大学,2010.

[70]王泰.从人因失误论瓦斯爆炸事故的可预防性[J].煤炭科学技术,2005(05):72-73.

[71]Seo D.An explicative model of unsafe work behavior[J].Safety Science,2005,05:187-211.

[72]Verschuur W.L.G.,Hurts K.Modeling Safe and Unsafe Driving Behaviour[J].Accident Analysis & Prevention,2008,40(2):644-656.

[73]张佳彩.煤矿工人不安全行为测量与实践[D].青岛:山东科技大学,2011.

[74]吴建金,耿修林,傅贵.基于中介效应法的安全氛围对员工安全行为的影响研究[J].中国安全生产科学技术,2013,9(03):80-86.

[75]Aksorn T,Hadikusumo B H W.Critical success factors influencing safety program performance in Thai construction projects[J].Safety Science,2008,46(4):709-727.

[76]Cheng C W,Lin C C,Leu S S.Use of association rules to explore cause-effect relationships in occupational accidents in the Taiwan construction industry[J].Safety Science,2010,48 (4):436-444.

[77]Perlman A,Sacks R,Barak R.Hazard recognition and risk perception in construction[J].Safety Science,2014,64(4):22-31.

[78]Scialfa C T,Deschênes M C,Ference J,et al.A hazard perception test for novice drivers[J].Accident Analysis&Prevention,2011,43(1):204-208.

[79]Wetton M A,Horswill M S,Hatherly C,et al.The development and validation of two complementary measures of drivers’hazard perception ability[J].Accident Analysis&Prevention,2010,42(4):1232-1239.

[80]Wetton M A,Hill A,Horswill M S.The development and validation of a hazard perception test for use in driver licensing[J].Accident Analysis&Prevention,2011,43(5):1759-1770.

[81]Borowsky A,Oron-Gilad T,Parmet Y.Age and skill differences in classifying hazardous traffic scenes[J].Transportation Research Part F Traffic Psychology&Behaviour,2009,12 (4):277-287.

[82]朱洪渊,蒋祖华,章倩.不同经验驾驶人危险感知差异研究[J].人类工效学,2015,21 (2):43-49.

[83]张巨峰,杨峰峰,郑超,张建江,苗在全,赵洋,雷武林.不同轮班制度对煤矿井下一线矿工疲劳的影响[J].煤矿安全,2017,48(01):235-237.

[84]田水承,乌力吉,寇猛,范永斌.基于生理实验的矿工不安全行为与疲劳关系研究[J].西安科技大学学报,2016,36(03):324-330.

[85]Farrand P,Mckenna F P.Risk perception in novice drivers:the relationship between questionnaire measur and response latency[J].Transportation Research.Part F:Traffic Psychology and Behaviour,2001,4(3):0-212.

[86]Hull M,Christie R.Hazard perception test:the Geelong trial and future development[C]//Proceedings of the National Road Safety Seminar,Wellington,New Zealand.Washington,USA:IEEE Computer Society,1992.

[87]Mcgowan A M, Banbury S P.Evaluating interruption-based techniques using embedded measures of driver anticipation[M]//BANBURY S P,TREMBLAY S.A cognitive approach to situation awareness.Aldershot,UK:Ashgate Publishing Ltd.,2004:176-192.

[88]Wetton M A,Horswill M S,Hatherly C,et al.The development and validation of two complementary measures of drivers’hazard perception ability[J].Accident Analysis and Prevention,2010,42(4):1232-1239.

[89]Vanlaar W,Yannis G.Perception of road accident causes[J].Accident Analysis and Prevention,2006,38.

[90]王雪春,吕淑然.噪声对安全注意力影响实验研究[J].中国安全生产科学技术,2016,12 (3):160-164.

[91]阳静,刘本燕,凌丽,李紫娟.噪声对大学生注意力的影响[J].环境与职业医学,2014,31 (2):119-125.

[92]徐海卿,周鋐,任永连.考虑驾驶员反应时间和注意力的噪声品质主观评价[J].汽车工程,2013,35(8):741-743.

[93]朱艺婷,翟国庆,高婷婷,洪友朋,黄逸凡,卢向明,张邦俊.低频环境噪声对思维判断能力的干扰影响[J].环境科学,2008,29(4):1143-1147.

[94]田水承,梁清,王莉,乌力吉,殷雷宇.噪声与矿工行为安全关系研究及防控对策[J].西安科技大学学报,2015,35(05):555-560.

[95]袁晓芳,周垚,孙林辉,方颖,彭飞飞.基于眼动特征的矿工危险感知研究[J].人类工效学,2019,25(02):20-26.

[96]王坚.目标概率对视觉搜索中扫视模式的影响[J].应用心理学,1992,(4):25-33.

[97]康卫勇,袁修干,柳忠起,等.瞳孔的变化与脑力负荷关系的试验分析[J].航天医学与医学工程,2007(05):364-366.

[98]Pedrotti M,Mirzaei M A,Tedesco A,et al.Automatic stress classification with pupil diameter analysis[J].International Journal of Human-Computer Interaction, 2014,30(3):220-236.

[99]L.Itti,C.Koch.Computational modelling of visual attention[J].Nature Reviews Neuroscience,2001,2(3):194–203.

[100]李万庆,安娟.基于RS-SVM的建筑施工项目安全预警模型[J].河北工程大学学报,2011,27(4):30~35.

雷辉,邓彦龙,李根军,钟君君.基于支持向量机的工程项目风险预测[J].北方经济,2006(20):167~169.

中图分类号:

 TD79    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式