- 无标题文档
查看论文信息

论文中文题名:

 季铵盐类离子液体的超声合成及其吸收CO2的性能和机理研究    

姓名:

 安子锷    

学号:

 19213065012    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0817    

学科名称:

 工学 - 化学工程与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程与技术    

研究方向:

 离子液体的合成与性能研究    

第一导师姓名:

 刘向荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Ultrasonic synthesis of quaternary ammonium ionic liquids and their adsorption abilities and adsorption mechanisms for carbon dioxide    

论文中文关键词:

 季铵盐类离子液体 ; 超声合成 ; CO2吸收性能 ; 吸收机理 ; 化学吸收    

论文外文关键词:

 Quaternary ammonium-base ionic liquids ; Ultrasonic synthesis ; CO2 absorption properties ; Absorption mechanism ; Chemical absorption    

论文中文摘要:

化石燃料燃烧排放的CO2被认为是导致全球变暖的主要原因,因此,减少CO2排放对人类的持续发展至关重要。目前,醇胺吸收法是比较常用的CO2吸收方法,但此方法存在易氧化降解、循环利用能耗高、对设备腐蚀性高等问题。季铵盐离子液体具有热稳定性高、蒸气压低、挥发性低、结构和性质可调变等特点,有望成为一种新型环保的CO2吸收剂。

本文利用超声技术合成了6种季铵盐类离子液体,探讨了超声合成的最优工艺条件,通过测定和计算,分析了季铵盐类离子液体水溶液吸收CO2的物性参数,研究了季铵盐类离子液体水溶液吸收CO2的性能和机理。

主要工作如下:

(1) 季铵盐类离子液体的超声合成工艺条件探究

合成了6种季铵盐类离子液体N2224Mal、N2224Sul、N2224Pyr、N2224Asp、N2224Pro和N2224Lys,探讨了超声强度、超声时间和搅拌速率对季铵盐离子液体产率的影响,发现超声法对提高离子液体产率和缩短合成时间效果明显,其中,对N2224Mal合成影响最显著。超声功率设定为400 W,经过超声时间1.0 h,N2224Mal的产率达到95.79%,能提高产率20.20%,缩短合成时间4.0 h。

(2) 季铵盐类离子液体的结构表征

通过红外光谱、核磁氢谱和核磁碳谱表征了6种季铵盐离子液体的结构,发现6种季铵盐离子液体的核磁共振图谱中H、C吸收峰的化学位移和数量与理论值相同,且6种季铵盐类离子液体的特征官能团的吸收峰均在红外光谱中对应出现,说明合成的6种季铵盐类离子液体与设计的结构相一致。

(3) 季铵盐类离子液体水溶液吸收CO2的物性参数计算

在303-353 K范围,测定了6种离子液体的密度和粘度。发现随着温度升高,离子液体的密度和粘度都会减小。根据Glasser模型,计算了离子液体的标准熵和晶格能等物性参数。通过Eyring液体粘度理论,计算了离子液体的流动活化Gibbs自由能ΔG*、流动活化焓ΔH*和流动活化熵ΔS*,发现焓效应决定其粘滞流动的阻力。此外,借助TG-DTG研究了离子液体的热稳定性,表明含氨基的离子液体N2224Sul、N2224Pyr、N2224Asp、N2224Pro和N2224Lys,热稳定性较强。

通过“N2O类比法”估算了CO2在离子液体水溶液中的溶解度系数,发现随温度升高,CO2的溶解度系数降低。计算了CO2在离子液体水溶液中的扩散系数,顺序为:N2224Mal > N2224Lys > N2224Pro > N2224Sul > N2224Pyr > N2224Asp。

(4) 离子液体水溶液吸收CO2的性能和机理研究

在303 K和浓度为0.5 mol L-1的条件下,测定了离子液体水溶液对CO2的吸收量,大小顺序为:N2224Lys > N2224Mal > N2224Pro > N2224Asp > N2224Pyr > N2224Sul,其中N2224Lys的吸收量最大为1.002 mol CO2/mol IL。离子液体水溶液对CO2的吸收量,随着温度和浓度升高而降低,随CO2分压的升高而增加。6种离子液体水溶液经过5次吸收/解吸循环后,仍能保持初始吸收量的80%。

通过13C NMR谱图,发现N2224Sul、N2224Pyr、N2224Asp、N2224Pro和N2224Lys的13C NMR谱图中均出现氨基甲酸酯特征峰,N2224Mal未出现。说明N2224Sul、N2224Pyr、N2224Asp、N2224Pro和N2224Lys水溶液吸收CO2为“zwitterion机理”,N2224Mal水溶液为物理吸收。此外,利用反应平衡热力学模型(RETM),计算了离子液体水溶液吸收CO2的热力学参数ΔHsol和ΔSsol。ΔHsol都小于零,说明这5种离子液体水溶液吸收CO2为放热过程。

论文外文摘要:

CO2 emissions from fossil fuel combustion are considered to be the main cause of global warming, therefore, reducing CO2 emissions is essential of human sustainable development. Currently, alkanolamine absorption method is the more commonly used method for CO2 absorption, but this method suffers from easy oxidative degradation, high energy consumption for recycling, and high corrosiveness to equipment. Quaternary ammonium-base ionic liquids have specific characteristics, for instance, high thermal stability, low vapor pressure, low volatility, as well as variable structure and properties, which are expected to be a new environmentally friendly CO2 absorbent.

In this work, six quaternary ammonium -base ionic liquids were synthesized by ultrasound technology and the optimal process conditions for ultrasound synthesis were discussed. The physical parameters of CO2 absorption into aqueous solutions of quaternary ammonium-base ionic liquids were analyzed by measurement and calculation. The performance and mechanism of CO2 absorption into aqueous solutions of quaternary ammonium-base ionic liquids were investigated.

The main work is as follows:

(1) Exploration of ultrasonic synthesis process conditions for quaternary ammonium-base ionic liquids

Six quaternary ammonium based ionic liquids containing N2224Mal、N2224Sul、N2224Pyr、N2224Asp、N2224Pro and N2224Lys were synthesized. The effects of ultrasonic intensity, ultrasonic time and stirring speed on the yield of ionic liquids were investigated. The ultrasonic method was found to be effective in improving the yield of ionic liquids and shortening the synthesis time, among which, the most significant effect was found on the synthesis of N2224Mal. When the ultrasonic power was set to 400 W, the yield of N2224Mal reached 95.79% after 1.0 h of ultrasonic time, which could increase the yield by 20.2% and reduce the synthesis time by 4 h.

(2) Structural characterization of quaternary ammonium-base ionic liquids

The structures of six quaternary ammonium base ionic liquids were characterized by 1H NMR, 13C NMR, and FTIR. It was found that the chemical shifts and numbers of H and C absorption peaks in the NMR spectra of the six quaternary ammonium-base ionic liquids were all the same as the theoretical values. The absorption peaks of the characteristic functional groups of the six quaternary ammonium-base ionic liquids appeared in the infrared spectra correspondingly, which indicated that the six quaternary ammonium-base ionic liquids were consistent with the designed structures.

(3) Calculation of physical parameters for CO2 absorption by quaternary ammonium-base ionic liquids aqueous solutions

The densities and viscosities of six ILs were measured in the temperature range of 303-353 K. It was found that the densities and viscosities of the ionic liquids decreased as the temperature increased. The physical parameters such as standard entropy and lattice energy of ionic liquids were calculated according to Glasser's model. The viscous fluid flow activation Gibbs free energy (ΔG*),the viscous fluid flow activation enthalpy (ΔH*) and the viscous fluid flow activation entropy (ΔS*) of six ionic liquids were calculated by the Eyring liquid viscosity theory, which illustrated that the enthalpy effect determines their resistance to viscous flow. In addition, the thermal stabilities of ionic liquids were investigated by TG-DTG, which presented that the ionic liquids containing amino groups N2224Sul, N2224Pyr, N2224Asp, N2224Pro and N2224Lys had strong thermal stabilities.

The solubility coefficients of CO2 into the ILs aqueous solutions were estimated by the "N2O analogy method", and the CO2 solubility coefficients were decreased with the increase of temperature. The diffusion coefficients of CO2 into ILs aqueous solutions were calculated and the CO2 diffusion coefficient order is: N2224Mal > N2224Lys > N2224Pro > N2224Sul > N2224Pyr > N2224Asp.

(4) Study on CO2 absorption performance and mechanism by aqueous solutions of ILs

The CO2 absorption capacities of ILs aqueous solutions were carried out at room temperature (303 K) and 0.5 mol L-1, the CO2 absorption showed the following order: N2224Lys > N2224Mal > N2224Pro > N2224Asp > N2224Pyr > N2224Sul, from which the maximum absorption of N2224Lys was 1.002 mol CO2/mol IL. The CO2 absorption of ILs aqueous solutions decreased with the increase of temperature and concentration, and promoted with the rise of CO2 partial pressure. The ILs aqueous solutions were still maintain 80% of the initial absorption after 5 absorption/desorption cycles.

The characteristic peaks of carbamate appeared in the 13C NMR spectra of N2224Sul, N2224Pyr, N2224Asp, N2224Pro and N2224Lys, but no characteristic peak appeared in N2224Mal. The CO2 absorption mechanism into N2224Sul, N2224Pyr, N2224Asp, N2224Pro and N2224Lys aqueous solutions followed the "zwitterion" absorption mechanism, while the N2224Mal aqueous solution was physical absorption. In addition, the thermodynamic parameters ΔHsol and ΔSsol of CO2 absorption into ILs aqueous solutions were obtained by using the reaction equilibrium thermodynamic model (RETM) derivation. The ΔHsol of N2224Sul、N2224Pyr、N2224Asp、N2224Pro and N2224Lys were less than zero, indicating that the CO2 absorptions of these ILs aqueous solutions were exothermic processes. 

参考文献:

[1] Sarkodie S A, Owusu P A. Escalation effect of fossil-based CO2 emissions improves green energy innovation[J]. Science of the Total Environment, 2021, 785: 147257.

[2] Mostafaeipour A, Bidokhti A, Fakhrzad M B, et al. A new model for the use of renewable electricity to reduce carbon dioxide emissions[J]. Energy, 2022, 238: 121602.

[3] Global Energy Review 2021[DB/OL]. 国际能源署 https://www.iea.org/.

[4] Bowman D M J S, Kolden C A, Abatzoglou J T, et al. Vegetation fires in the Anthropocene[J]. Nature Reviews Earth & Environment, 2020, 1 (10): 500-515.

[5] Fujimori S, Hasegawa T, Krey V, et al. A multi-model assessment of food security implications of climate change mitigation[J]. Nature Sustainability, 2019, 2 (5): 386-396.

[6] Bronselaer B, Zanna L. Heat and carbon coupling reveals ocean warming due to circulation changes[J]. Nature, 2020, 584 (7820): 227-233.

[7] Shaw R, Mukherjee S. The development of carbon capture and storage (CCS) in India: a critical review[J]. Carbon Capture Science & Technology, 2022: 100036.

[8] Trnka M, Rötter R P, Ruiz-Ramos M, et al. Adverse weather conditions for European wheat production will become more frequent with climate change[J]. Nature Climate Change, 2014, 4 (7): 637-643.

[9] Scholes C A, Smith K H, Kentish S E, et al. CO2 capture from pre-combustion processes-strategies for membrane gas separation[J]. International Journal of Greenhouse Gas Control, 2010, 4 (5): 739-755.

[10] Chen C, Yang S. The energy demand and environmental impacts of oxy-fuel combustion vs. post-combustion capture in China[J]. Energy Strategy Reviews, 2021, 38: 100701.

[11] Kárászová M, Zach B, Petrusová Z, et al. Post combustion carbon capture by membrane separation, review[J]. Separation and Purification Technology, 2020, 238: 116448.

[12] Firdaus R M, Desforges A, Rahman Mohamed A, et al. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: a comparative study[J]. Journal of Cleaner Production, 2021, 328: 129553.

[13] Varghese A M, Karanikolos G N. CO2 capture adsorbents functionalized by amine-bearing polymers: a review[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103005.

[14] Elhambakhsh A, Keshavarz P. Sono-hollow fiber membrane contactors: a new approach for CO2 separation by physical/chemical absorbents[J]. Journal of Natural Gas Science and Engineering, 2022: 104538.

[15] Gür T M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965.

[16] Aaron D, Tsouris C. Separation of CO2 from flue gas: a review[J]. Separation Science and Technology, 2011, 40 (1-3): 321-348.

[17] Balraj A, Sekaran A P C, Ramamurthy N, et al. Systematic review on sono-assisted CO2 stripping, solvent recovery and energy demand aspects in solvent-based post-combustion carbon dioxide capture process[J]. Chemical Engineering and Processing-Process Intensification, 2022, 170: 108723.

[18] Martin Roberts E, Scott V, Flude S, et al. Carbon capture and storage at the end of a lost decade[J]. One Earth, 2021, 4 (11): 1569-1584.

[19] Godin J, Liu W, Ren S, et al. Advances in recovery and utilization of carbon dioxide: a brief review[J]. Journal of Environmental Chemical Engineering, 2021, 9 (4): 105644.

[20] Zhang W, Jin X, Tu W, et al. A novel CO2 phase change absorbent: MEA/1-propanol/H2O[J]. Energy & Fuels, 2017, 31(4): 4273-4279.

[21] Shi H, Huang M, Huang Y, et al. CO2 absorption efficiency of various MEA-DEA blend with aid of CaCO3 and MgCO3 in a batch and semi-batch processes[J]. Separation and Purification Technology, 2019, 220: 102-113.

[22] Zheng Y, El Ahmar E, Simond M, et al. CO2 Heat of Absorption in Aqueous Solutions of MDEA and MDEA/Piperazine[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 3784-3793.

[23] Ahmad N, Chen Y, Wang X, et al. Highly efficient electrochemical upgrade of CO2 to CO using AMP capture solution as electrolyte[J]. Renewable Energy, 2022, 189: 444-453.

[24] Khan A A, Halder G, Saha A K. Kinetic effect and absorption performance of piperazine activator into aqueous solutions of 2-amino-2-methyl-1-propanol through post-combustion CO2 capture[J]. Korean Journal of Chemical Engineering, 2019, 36 (7): 1090-1101.

[25] Gao H, Wang N, Du J, et al. Comparative kinetics of carbon dioxide (CO2) absorption into EAE, 1DMA2P and their blends in aqueous solution using the stopped-flow technique[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102948.

[26] Donaldson T L, Nguyen Y N. Carbon dioxide reaction kinetics and transport in aqueous amine membranes[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19 (3): 260-266.

[27] Akhmetshina A I, Petukhov A N, Vorotyntsev A V, et al. Absorption behavior of acid gases in protic ionic liquid/alkanolamine binary mixtures[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3429-3437.

[28] Noroozi J, Smith W R. Accurately predicting CO2 reactive absorption properties in aqueous alkanolamine solutions by molecular simulation requiring no solvent experimental data[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 18254-18268.

[29] Wu Y, Xu J, Mumford K, et al. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids[J]. Green Chemical Engineering, 2020, 1 (1): 16-32.

[30] Olajire A A. CO2 capture and separation technologies for end-of-pipe applications-a review[J]. Energy, 2010, 35 (6): 2610-2628.

[31] Bonalumi D, Lillia S, Valenti G. Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture[J]. Energy Conversion and Management, 2019, 199: 111966.

[32] Yu H, Qi G, Xiang Q, et al. Aqueous ammonia-based post combustion capture: results from pilot plant operation, challenges and further opportunities[J]. Energy Procedia, 2013, 37: 6256-6264.

[33] Chen P C, Shi W, Du R, et al. Scrubbing of CO2 Greenhouse Gases, accompanied by precipitation in a continuous bubble-column scrubber[J]. Industrial & Engineering Chemistry Research, 2008, 47 (16): 6336-6343.

[34] Li Y, Wang H P, Liao C Y, et al. Dual alkali solvent system for CO2 capture from flue gas[J]. Environmental Science & Technology, 2017, 51 (15): 8824-8831.

[35] Jiang B, Wang X, Gray M M L, et al. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture[J]. Applied Energy, 2013, 109: 112-118.

[36] Zhang Z, Li Y, Zhang W, et al. Effectiveness of amino acid salt solutions in capturing CO2: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 179-188.

[37] Majchrowicz M E, Brilman D W F W, Groeneveld M J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases[J]. Energy Procedia, 2009, 1 (1): 979-984.

[38] Sanchez Fernandez E, Heffernan K, Van Der Ham L V, et al. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents[J]. Industrial & Engineering Chemistry Research, 2013, 52 (34): 12223-12235.

[39] Aronu U E, Svendsen H F, Hoff K A. Investigation of amine amino acid salts for carbon dioxide absorption[J]. International Journal of Greenhouse Gas Control, 2010, 4 (5): 771-775.

[40] Sotelo J L, Beltrán F J, Benitez F J, et al. Henry's law constant for the ozone-water system[J]. Water Research, 1989, 23 (10): 1239-1246.

[41] Liu H, Tian H, Yao H, et al. Improving physical absorption of carbon dioxide by ionic liquid dispersion[J]. Chemical Engineering & Technology, 2013, 36 (8):1402-1410.

[42] Julbe A, Drobek M, Ayral A. About the role of adsorption in inorganic and composite membranes[J]. Current Opinion in Chemical Engineering, 2019, 24: 88-97.

[43] Karimi M, Shirzad M, Sliva J A C, et al. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions[J]. Journal of CO2 Utilization, 2022, 57: 101890.

[44] Sarker A I, Aroonwilas A, Veawab A. Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons[J]. Energy Procedia, 2017, 114: 2450-2459.

[45] Rubin E S, Mantripragada H, Marks A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38 (5): 630-671.

[46] Garcés Polo S I, Villarroel Rocha J, Sapag K, et al. Adsorption of CO2 on mixed oxides derived from hydrotalcites at several temperatures and high pressures[J]. Chemical Engineering Journal, 2018, 332: 24-32.

[47] Coenen K, Gallucci F, Mezari B, et al. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites[J]. Journal of CO2 Utilization, 2018, 24: 228-239.

[48] Ruhaimi A H, Aziz M A A, Jalil A A. Magnesium oxide-based adsorbents for carbon dioxide capture: current progress and future opportunities[J]. Journal of CO2 Utilization, 2021, 43: 101357.

[49] Ho P H, Lofty V, Basta A, et al. Designing microporous activated carbons from biomass for carbon dioxide adsorption at ambient temperature. A comparison between bagasse and rice by-products[J]. Journal of Cleaner Production, 2021, 294: 126260.

[50] Adil K, Bhatt P M, Belmabkhout Y, et al. Valuing metal-organic frameworks for postcombustion carbon capture: a benchmark study for evaluating physical adsorbents[J]. Advanced Materials, 2017, 29 (39): 1702953.

[51] Ansari M, Das N. Triptycene-based porous photoluminescent polymers with dual role: efficient capture of carbon dioxide and sensitive detection of picric acid[J]. Materials Today Chemistry, 2022, 23: 100723.

[52] Ozdemir J, Mosleh I, Abolhassani M, et al. Covalent organic frameworks for the capture, fixation, or reduction of CO2[J]. Frontiers in Energy Research, 2019: 77.

[53] Zhang P, Xiong W, Shi M, et al. Natural deep eutectic solvent-based gels with multi-site interaction mechanism for selective membrane separation of SO2 from N2 and CO2[J]. Chemical Engineering Journal, 2022, 438: 135626.

[54] Khalilinejad I, Kargari A, Sanaeepur H. Preparation of ethylene vinyl acetate/zeolite 4A mixed matrix membrane for CO2/N2 separation[J]. Iranian Journal of Polymer Science and Technology, 2016, 29 (3): 231-247.

[55] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87 (9-10): 1051-1069.

[56] Klumpen C, Breunig M, Homburg T, et al. Microporous organic polyimides for CO2 and H2O capture and separation from CH4 and N2 mixtures: interplay between porosity and chemical function[J]. Chemistry of Materials, 2016, 28 (15): 5461-5470.

[57] Shen C, Wang Z. Tetraphenyladamantane-based microporous polyimide and its nitro-functionalization for highly efficient CO2 capture[J]. The Journal of Physical Chemistry C, 2014, 118 (31): 17585-17593.

[58] Yan J, Zhang B, Wang Z. Highly selective separation of CO2, CH4, and C2-C4 hydrocarbons in ultramicroporous semicycloaliphatic polyimides[J]. ACS Applied Materials & Interfaces, 2018, 10 (31): 26618-26627.

[59] Maqsood K, Pal J, Turunawarasu D, et al. Performance enhancement and energy reduction using hybrid cryogenic distillation networks for purification of natural gas with high CO2 content[J]. Korean Journal of Chemical Engineering, 2014, 31 (7): 1120-1135.

[60] Pires J C M, Alvim Ferraz M C M, Martins F G, et al. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept[J]. Renewable and Sustainable Energy Reviews, 2012, 16 (5): 3043-3053.

[61] Skjanes K, Lindblad P, Muller J. BioCO2-a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products[J]. Biomolecular Engineering, 2007, 24 (4): 405-413.

[62] Sugden S, Wilkins H. CLXVII.-the parachor and chemical constitution. Part XII. Fused metals and salts[J]. Journal of the Chemical Society (Resumed), 1929: 1291-1298.

[63] Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. Journal of The Electrochemical Society, 1951, 98 (5): 203.

[64] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the Chemical Society, Chemical Communications, 1992, (13): 965-967.

[65] Sistla Y S, Sridhar V. Molecular understanding of carbon dioxide interactions with ionic liquids[J]. Journal of Molecular Liquids, 2021, 325: 115162.

[66] Zhu X, Zhang J, Zhang Z, et al. One-step preparation of ammonium-specified pyrazolium ionic liquids unveil the more popular pathway for the CO2 fixation: integrated experimental and theoretical studies[J]. Journal of Molecular Liquids, 2021, 328: 115435.

[67] Hospital Benito D, Lemus J, Moya C, et al. Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes[J]. Chemical Engineering Journal, 2021, 407: 127196.

[68] Zhao Y, Wang J, Ji Z, et al. A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer[J]. Chemical Engineering Journal, 2020, 381: 122542.

[69] Sistla Y S, Khanna A. Carbon dioxide absorption studies using amine-functionalized ionic liquids[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (4): 2497-2509.

[70] Li F, Bai Y, Zeng S, et al. Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102801.

[71] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399 (6731): 28-29.

[72] Makino T, Kanakubo M, Masuda Y, et al. Physical and CO2-absorption properties of imidazolium ionic liquids with tetracyanoborate and bis (trifluoromethanesulfonyl) amide anions[J]. Journal of Solution Chemistry, 2014, 43 (9): 1601-1613.

[73] Ali E, Alnahef I, Ajbar A, et al. Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid[J]. Korean Journal of Chemical Engineering, 2013, 30 (11): 2068-2077.

[74] Zhu J, Zhou J, Zhang H, et al. CO2 sorption capacity of porous poly(ionic liquid)s[J]. Journal of Polymer Research, 2011, 18 (6): 2011-2015.

[75] Zhang S J, Zhang X P, Zhao Y S, et al. A novel ionic liquids-based scrubbing process for efficient CO2 capture[J]. Science China Chemistry, 2010, 53 (7): 1549-1553.

[76] Lim B H, Choe W H, Shim J J, et al. High-pressure solubility of carbon dioxide in imidazolium-based ionic liquids with anions [PF6] and [BF4][J]. Korean Journal of Chemical Engineering, 2010, 26 (4): 1130-1136.

[77] Finotello A, Bara J E, Camper D, et al. Room-temperature ionic liquids: temperature dependence of gas solubility selectivity[J]. Industrial & Engineering Chemistry Research, 2008, 47 (10): 3453-3459.

[78] Kerlé D, Ludwig R, Geiger A, et al. Temperature dependence of the solubility of carbon dioxide in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2009, 113 (38): 12727-12735.

[79] Cadena C, Anthony J L, Shah J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society, 2004, 126 (16): 5300-5308.

[80] Aki S N V K, Mellein B R, Saurer E M, et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2004, 108 (52): 20355-20365.

[81] Xue Z, Zhang Z, Han J, et al. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion[J]. International Journal of Greenhouse Gas Control, 2011, 5 (4): 628-633.

[82] Zhang J, Jia C, Dong H, et al. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2013, 52 (17): 5835-5841.

[83] Zeng S, Wang J, Bai L, et al. Highly selective capture of CO2 by ether-functionalized pyridinium ionic liquids with low viscosity[J]. Energy & Fuels, 2015, 29 (9): 6039-6048.

[84] Liu X, Zhou G, Zhang S, et al. Molecular dynamics simulation of dual amino-functionalized imidazolium-based ionic liquids[J]. Fluid Phase Equilibria, 2009, 284 (1): 44-49.

[85] Fillion J J, Bennett J E, Brennecke J F. The viscosity and density of ionic liquid+ tetraglyme mixtures and the effect of tetraglyme on CO2 solubility[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 608-622.

[86] Wang C, Luo X, Luo H, et al. Tuning the basicity of ionic liquids for equimolar CO2 capture[J]. Angewandte Chemie International Edition, 2011, 50 (21): 4918-4922.

[87] McDonald J L, Sykora R E, Hixon P, et al. Impact of water on CO2 capture by amino acid ionic liquids[J]. Environmental Chemistry Letters, 2014, 12 (1): 201-208.

[88] Gurkan B E, Fuente J C, Mindrup E M, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society, 2010, 132 (7): 2116-2117.

[89] Yasaka Y, Ueno M, Kimura Y. Chemisorption of carbon dioxide in carboxylate-functionalized ionic liquids: a mechanistic study[J]. Chemistry Letters, 2014, 43 (5): 626-628.

[90] Wang G, Hou W, Xiao F, et al. Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption[J]. Journal of Chemical & Engineering Data, 2011, 56 (4): 1125-1133.

[91] Sharma P, Choi S H, Park S D, et al. Selective chemical separation of carbondioxide by ether functionalized imidazolium cation based ionic liquids[J]. Chemical Engineering Journal, 2012, 181: 834-841.

[92] Baek I H. Response to: comment on ‘Selective chemical separation of carbon dioxide by ether functionalized imidazolium cation based ionic liquids’[J]. Chemical Engineering Journal, 2014, 245: 370-371.

[93] Seo S, Quiroz Guzman M, Gohndrone T R, et al. Comment on “Selective chemical separation of carbon dioxide by ether functionalized imidazolium cation based ionic liquids”[J]. Chemical Engineering Journal, 2014, 100 (245): 367-369.

[94] Baj S, Krawczyk T, Dabrowska A, et al. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions[J]. Korean Journal of Chemical Engineering, 2015, 32 (11): 2295-2299.

[95] Tiwari S C, Pant K K, Upadhyayula S. Efficient CO2 absorption in aqueous dual functionalized cyclic ionic liquids[J]. Journal of CO2 Utilization, 2021, 45: 101416.

[96] Zhou X, Jing G, Liu F, et al. Mechanism and kinetics of CO2 absorption into an aqueous solution of a triamino-functionalized ionic liquid[J]. Energy & Fuels, 2017, 31 (2): 1793-1802.

[97] Park S W, Choi B S, Park D W, et al. Kinetic parameter estimation for 1, 1, 3, 3-tetramethylguanidinum trifluoroacetate ionic liquid in the reaction of glycidyl methacrylate with carbon dioxide[J]. Research on Chemical Intermediates, 2008, 34 (8): 881-889.

[98] Chaudhary A, Bhaskarwar A N. Effect of physical properties of synthesized protic ionic liquid on carbon dioxide absorption rate[J]. Environmental Science and Pollution Research, 2022: 1-19.

[99] Guo P F, Yang J Y, Maye P E E, et al. Denitrification of coal-tar diesel fraction by phosphate imidazolium based polymeric ionic liquids[J]. China Petroleum Processing & Petrochemical Technology, 2018, 10 (2): 135-143.

[100] 王明启,杜仕国,闫军,俞卫博,孟胜皓,李晨.离子液体的制备及其在酶催化中的应用进展[J].兵器装备工程学报,2018,39(05):179-185.

[101] Lévêque J M, Luche J L, Pétrier C, et al. An improved preparation of ionic liquids by ultrasound[J]. Green Chemistry, 2002, 4(4): 357-360.

[102] 刘红霞, 徐群. 微波法合成烷基咪唑类离子液体[J]. 化学试剂, 2006 (10): 581-582.

[103] Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves[J]. Chemical Communications, 2001 (7): 643-644.

[104] Namboodiri V V, Varma R S. An improved preparation of 1, 3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves[J]. Tetrahedron Letters, 2002, 43(31): 5381-5383.

[105] 蒋平平,李晓婷,冷炎,董玉明,张萍波.离子液体制备及其化工应用进展[J].化工进展,2014,33(11):2815-2828.

[106] Messali M. An efficient and green sonochemical synthesis of some new eco-friendly functionalized ionic liquids[J]. Arabian Journal of Chemistry, 2014, 7(1): 63-70.

[107] 于长顺,马春,闵庆旺,陈丽凤.超声合成吡啶类离子液体的研究[J].大连工业大学学报,2008(01):62-65.

[108] Wang Y W, Xu S, Otto F D, et al. Solubility of N2O in alkanolamines and in mixed solvents[J]. The Chemical Engineering Journal, 1992, 48 (1): 31-40.

[109] Laddha S S, Diaz J M, Danckwerts P V. The N2O analogy: the solubilities CO2 and N2O in aqueous solutions of organic compounds[J]. Chemical Engineering Science, 1981, 36 (1): 228-229.

[110] Rischbieter E, Schumpe A, Wunder V. Gas solubilities in aqueous solutions of organic substances[J]. Journal of Chemical & Engineering Data, 1996, 41 (4): 809-812.

[111] Wrisenberger S, Schumpe A. Estimation of gas solubilities in salt-solutions at temperatures from 273 K to 363 K[J]. AIChE Journal, 1996, 42 (1): 298-300.

[112] Kumar P S, Hogendoorn J A, Feron P H M, et al. Density, viscosity, solubility, and diffusivity of N2O in aqueous amino acid salt solutions[J]. Journal of Chemical & Engineering Data, 2001, 46 (6): 1357-1361.

[113] Glasser L. Lattice and phase transition thermodynamics of ionic liquids[J]. Thermochimica Acta, 2004, 421 (1-2): 87-93.

[114] Liu Q S, Yang M, Li P P, et al. Physicochemical properties of ionic liquids [C3py][NTf2] and [C6py][NTf2][J]. Journal of Chemical & Engineering Data, 2011, 56 (11): 4094-4101.

[115] Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates[J]. The Journal of Chemical Physics, 1936, 4 (4): 283-291.

[116] Moganty S S, Baltus R E. Regular solution theory for low pressure carbon dioxide solubility in room temperature ionic liquids: ionic liquid solubility parameter from activation energy of viscosity[J]. Industrial & Engineering Chemistry Research, 2010, 49 (12): 5846-5853.

[117] 王兵. 季胺基氨基酸离子液体吸收H_2S和CO_2的研究[D].北京化工大学,2017.

[118] 苏辉辉. 马来酸酐改性纤维素衍生物的合成及性能探究[D].北京林业大学,2012.

[119] 张军. 吸收SO_2功能离子液体设计合成研究[D].昆明理工大学,2012.

[120] 刘秋萍. 胆碱—氨基酸离子液体的合成、表征、生物可降解性及毒性的研究[D].华南理工大学,2012.

[121] Zhu A, Wang J, Li Q, et al. Volumetric and viscosity properties for the binary mixtures of 1-octyl-3-methylimidazolium tetrafluoroborate with butanone or alkyl acetates[J]. Journal of Solution Chemistry, 2012, 41 (12): 2246-2256.

[122] Domańska U, Laskowska M. Effect of temperature and composition on the density and viscosity of binary mixtures of ionic liquid with alcohols[J]. Journal of Solution Chemistry, 2009, 38 (6): 779-799.

[123] 戴月. 功能化离子液体的合成、表征及其吸收CO2的性能研究[D].南京大学,2012.

[124] Losetty V, Matheswaran P, Wilfred C D. Synthesis, thermophysical properties and COSMO-RS study of DBU based protic ionic liquids[J]. The Journal of Chemical Thermodynamics, 2017, 105: 151-158.

[125] Bagno A, Butts C, Chiappe C, et al. The effect of the anion on the physical properties of trihalide-based N, N-dialkylimidazolium ionic liquids[J]. Organic & biomolecular chemistry, 2005, 3(9): 1624-1630.

[126] Zeng S, Zhang X, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chemical Reviews, 2017, 117 (14): 9625-9673.

[127] Sang Sefidi V, Luis P. Advanced amino acid-based technologies for CO2 capture: a review[J]. Industrial & Engineering Chemistry Research, 2019, 58 (44): 20181-20194.

[128] Li R, Zhao Y, Li Z, et al. Choline-based ionic liquids for CO2 capture and conversion[J]. Science China Chemistry, 2019, 62 (2): 256-261.

[129] Ansarypur G, Bayareh M, Jahangiri A. Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147 (2): 1689-1697.

[130] Janković B, Manić N, Jović M, et al. Kinetic and thermodynamic analysis of thermo-oxidative degradation of seashell powders with different particle size fractions: compensation effect and iso-equilibrium phenomena[J]. Journal of Thermal Analysis and Calorimetry, 2021: 1-30.

中图分类号:

 TQ424.3    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式