论文中文题名: | 设置井字加劲肋的联肢钢板剪力墙结构 抗震性能研究 |
姓名: | |
学号: | 18204055018 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081402 |
学科名称: | 工学 - 土木工程 - 结构工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 高层钢结构抗震 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-16 |
论文答辩日期: | 2021-06-01 |
论文外文题名: | Study on seismic performance of coupled steel plate shear wall structure with grid stiffeners |
论文中文关键词: | |
论文外文关键词: | Concrete-filled square steel tube ; coupled steel plate shear wall ; experimental study ; finite element analysis ; degree of coupling ; failure mode ; seismic performance |
论文中文摘要: |
钢板剪力墙由剪力墙板、竖向边缘构件和水平边缘构件组成。通过钢连梁将两片钢板剪力墙在各层相连,可构成联肢钢板剪力墙结构。由于连梁的耦联作用,相连的两组单肢钢板剪力墙可以协同工作,提高结构的抗侧能力。本文中联肢钢板剪力墙的竖向边缘构件采用方钢管混凝土柱,在钢板剪力墙屈曲后,方钢管边框柱可为其提供足够的锚固,可以充分发挥钢板墙的力学性能。另一方面,在钢板剪力墙上设置了井字加劲肋,能减少墙板的震颤和声响,可有效约束钢板墙的面外变形,提高其承载力和耗能性能。采用试验研究和数值模拟相结合的方法,对设置井字加劲肋的联肢钢板剪力墙结构的抗震性能进行了研究。主要内容如下: (1)利用低周往复荷载试验对一榀3层3跨1:3比例的设置井字加劲肋的联肢钢板剪力墙试件进行了分析,研究了方钢管混凝土边框-联肢钢板剪力墙的抗震性能。试验研究表明:该结构具有较好的承载力、耗能能力及延性。墙板和钢连梁依靠自身的塑性变形耗散地震能量,继而塑性铰在边框梁端部形成,最后柱脚形成塑性铰并处于鼓曲状态。满足了“强墙肢,弱构件”的设计理念,实现了多道设防的抗震设计目标。 (2)采用有限元软件ABAQUS2017对试验试件进行了精细化数值分析,并将有限元模拟的各性能指标与试验结果进行了对比。结果表明:有限元计算结果与试验结果吻合较好,可充分地反映试件的滞回性能和破坏过程,表明该分析方法能够较好的模拟设置井字加劲肋的联肢钢板剪力墙在往复荷载作用下的各抗震性能指标。通过对试验与有限元结果的综合分析,对试件的应力、应变分布进行了研究,明确了设置井字加劲肋联肢钢板剪力墙的受力机理与破坏机制。 (3)建立了联肢钢板墙的足尺有限元模型。针对足尺模型研究了钢连梁腹板厚度和翼缘厚度、钢板剪力墙墙板加劲形式和轴压比等对设置井字加劲肋的联肢钢板剪力墙结构受力性能的影响。结果表明:增大钢连梁腹板厚度,可有效提高结构的强度、刚度及耗能能力,而钢连梁翼缘厚度对结构各性能指标影响较小;随着加劲肋密度的增加,结构的强度与耗能能力也随之增大;设置井字加劲肋的联肢钢板剪力墙结构的初始刚度在轴压比的作用下影响较小,然而该结构的强度和耗能能力会随着轴压比的增大而逐渐降低。 (4)根据耦联率的计算公式,通过改变连梁截面、框架梁截面及钢板剪力墙墙板跨度,得到了不同耦联率的联肢钢板剪力墙模型,并通过有限元方法研究了耦联率对联肢钢板剪力墙结构的影响。结果表明:耦联率对联肢钢板剪力墙结构的承载力、刚度及耗能能力具有一定的影响,为了保证结构具有良好的耗能能力,建议设置井字加劲肋的联肢钢板剪力墙结构的最优耦联率取值为0.50。 |
论文外文摘要: |
The steel plate shear wall (SPSW) is composed of web plate, vertical boundary elements and horizontal boundary elements. Linked by coupling beams, two steel plate shear walls compose the coupled steel plate shear walls (CSPSW). Due to the link effect of the coupling beams, two adjacent SPSWs can work together to improve the structural resistance performance. In this paper, vertical boundary elements of coupled steel plate shear walls were concrete-filled square steel tubes, and the introduction of concrete-filled square steel tubes could fully develop the post buckling behavior of steel plate shear walls. On the other hand, grid stiffeners were set on the steel plate shear walls, which can effectively reduce the tremor and noise of the web plate, and can also effectively restrain the outer deformation of the web plate, improve its strength and energy dissipation. Experimental research and numerical analysis are used to study the seismic performance of CSPSW structure. The research includes the following aspects: (1) A cyclic loading test was performed on a 3-story, 3-span CSPSW with scale of 1/3. The seismic performance of the CSPSW was studied. The experimental results demonstrate that the structure has good bearing capacity, ductility, energy dissipation, and excellent seismic performance. The web plates and the steel coupling beams dissipate seismic energy by their own plastic deformation, and then the end of the horizontal boundary elements forms the plastic hinge. Finally, the specimens failed due to the development of plastic hinges at column base. It meets the design concept of "strong piers, weak components", the aim of multiple seismic resistant system was achieved. (2) The finite element software ABAQUS2017 was used to perform nonlinear numerical simulation on the test specimens. The performance indexes of the finite element simulation are compared with the test results. The results show that the finite element results are in good agreement with the test results. It can fully reflect the hysteresis performance and failure mode of the specimen. It shows that this analysis method can better simulate the seismic performance indexes of the CSPSW with grid stiffeners under a cyclic loading, which verified the validity of the finite element modeling method. Combined with the test and finite element analysis results, the stress-strain development process of the specimen was analyzed, and the failure mode of structure were obtained. (3) Using finite element method, full-scale CSPSW model was established. The impact of the web and flange thickness of steel coupling beams, stiffening form of steel plate shear wall and the axial compression ratio on the mechanical performance of CSPSW with grid stiffeners was studied. The results show that increasing the web thickness of the steel coupling beam can effectively improve the strength, stiffness and energy dissipation of the structure, while the thickness of the flange of the steel coupling beam has little effect on the performance of the structure. With the increase of the stiffening density of web plate, the strength and energy dissipation of the structure also increase. The axial compression ratio has less influence on the stiffness, and the increase of axial compression ratio will decrease the strength and energy dissipation. (4) According to the principle of degree of coupling. Changing the coupling beam section, the horizontal boundary elements section and the span of the steel plate shear wall, different degree of coupling (DC) were obtained. The influence of DC on the CSPSW is studied. The results show that the DC has influences on the strength, stiffness and energy dissipation of the CSPSW. In order to ensure that the structure has a good energy dissipation. It is recommended that the optimal DC of the CSPSW with grid stiffeners is 0.50. |
参考文献: |
[1] 郭彦林,董全利. 钢板剪力墙的发展与研究现状[J]. 钢结构,2005,20(1):1-6. [2] 聂建国,朱力,樊健生,等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报,2013,34(1):61-69. [3] 王先铁,周超,贾贵强,等. 方钢管混凝土柱框架内置中间开洞薄钢板墙结构抗震性能试验研究[J]. 建筑结构学报,2015,36(8):16-23. [4] 郭彦林,周明. 非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J]. 建筑结构学报,2011,32(1):1-16. [5] GB 50017-2017 钢结构设计标准[S]. 北京:中国建筑工业出版社,2018. [6] JGJ 99-2015 高层民用建筑钢结构技术规程[S]. 北京:中国建筑工业出版社,2016. [7] JGJ/T 380-2015 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社,2016. [9] 王先铁,马尤苏夫,郝际平,等. 钢板剪力墙边缘构件的计算方法研究[J]. 工程力学,2014,31(8):175-182. [10] 王先铁,马尤苏夫,苏明周. 方钢管混凝土框架-薄钢板剪力墙边框柱刚度研究[J]. 工程力学,2015,32(6):146-154,170. [21] 鲁春晓,郁有升. 非加劲钢板剪力墙的受力机理研究[J]. 青岛理工大学学报,2018,39(5):36-41+95. [22] 邵建华,顾强,申永康. 多层钢板剪力墙水平荷载作用下结构性能的有限元分析[J]. 工程力学,2008,25(6):140-145. [23] 邵建华,顾强,申永康. 钢板剪力墙抗震性能的有限元分析[J]. 华南理工大学学报(自然科学版),2008,36(1):128-133. [24] 苏幼坡,刘英利,王绍杰. 薄钢板剪力墙抗震性能试验研究[J]. 地震工程与工程振动,2002,22(4):81-84. [25] 聂建国,黄远,田淑明,等. 高层钢板剪力墙结构底部加强层抗震性能分析[J]. 地震工程与工程振动,2008,28(6):163-171. [26] 曹万林,李刚,张建伟,等. 钢管混凝土边框不同高厚比钢板剪力墙抗震性能[J]. 北京工业大学学报,2010,36(8):1059-1068. [28] 王迎春,郝际平,曹春华,等. 栓焊混合连接钢板剪力墙试验研究[J]. 建筑钢结构进展,2009,11(1):16-20. [29] 王迎春,郝际平,李峰,等. 钢板剪力墙力学性能研究[J]. 西安建筑科技大学学报(自然科学版),2007,39(2):181-186. [30] 曹春华,郝际平,杨丽,等. 钢板剪力墙弹塑性分析[J]. 建筑结构,2007,37(10):53-56. [31] 曹春华,郝际平,王迎春,等. 开缝薄钢板剪力墙低周反复荷载试验研究[J]. 西安建筑科技大学学报(自然科学版),2008,40(1):46-52. [32] 王嘉政. 十字加劲波纹钢板剪力墙的滞回性能研究[D]. 长安大学,2019. [33] 杨雨青,牟在根. 不同形式的槽钢加劲钢板剪力墙滞回性能研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(8):876-888. [34] 于金光,贺迪,郝际平,等. 十字加劲放置形式对钢板剪力墙性能的影响[J]. 华中科技大学学报(自然科学版),2019,7(3):121-126. [35] 陈国栋,郭彦林. 非加劲板抗剪极限承载力[J]. 工程力学,2003,20(2):49-54. [36] 陈国栋,郭彦林. 十字加劲钢板剪力墙的抗剪极限承载力[J]. 建筑结构学报,2004,25(1):71-78. [37] 陈国栋,郭彦林,范珍,等. 钢板剪力墙低周反复荷载试验研究[J]. 建筑结构学报,2004,25(2):19-26. [38] 王先铁,白连平,郝际平. 方钢管混凝土框架-十字加劲薄钢板剪力墙的力学性能研究[J]. 地震工程与工程振动,2013,33(2):111-117. [45] 林荣深,陈麟,董师敏,等. 双钢板高强混凝土联肢剪力墙抗震性能分析[J]. 地震工程与工程振动,2015,35(1):157-166. [46] 宋安良,苏明周,王丽. 剪切屈服型新型混合联肢墙足尺节点抗震性能试验研究[J]. 土木工程学报,2015,48(7):71-81. [47] 伍云天,周庆,苏义庭,等. 钢板混凝土联肢组合剪力墙结构抗震设计方法及试验研究[J]. 建筑结构学报,2017,38(1):58-65. [48] 谭智诚. 联肢钢板剪力墙结构抗震性能分析[D]. 广州大学,2018. [49] 车佳玲. FRC对角斜筋连梁及联肢剪力墙抗震性能与设计方法研究[D]. 西安建筑科技大学,2013. [50] 石韵,苏明周,梅许江,等. 高耦连比新型混合连肢墙结构滞回性能拟静力试验研究[J]. 土木工程学报,2013,46(1):52-60. [51] 周颖,缪驰,闫峰,等. 钢骨混凝土连梁联肢剪力墙抗震性能试验研究及有限元分析[J]. 建筑结构学报,2015,36(3):36-45. [52] 曹万林,常卫华,张建伟,等. 内藏钢桁架带洞口混凝土组合核心筒抗震试验及分析[J]. 东南大学学报(自然科学版),2008,38(2):283-288. [60] GB/T 2975-2018. 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京:中国标准出版社,2019. [61] GB/T 228.1-2010. 金属材料室温拉伸试验方法[S]. 北京:中国标准出版社,2011. [62] GB/T 50081-2002. 普通混凝土力学试验方法标准[S]. 北京:中国建筑工业出版社,2003. [63] JGJ/T 101-2015. 建筑抗震试验方法规程[S]. 北京:中国标准出版社,2016. [64] 熊仲明,王社良. 土木工程结构试验[M]. 北京:中国建筑工业出版社,2006. [65] 姚振刚,刘祖华. 建筑结构试验[M]. 上海:同济大学出版社,1996. [66] 周天华,李文超,管宇,等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学,2014,31(7):146-155. [67] 李文超. 微观机制断裂理论在高强钢材料及钢结构断裂预测分析中的应用研究[D]. 西安:长安大学,2017. [68] 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州:福州大学,2007. [69] 尧国皇. 钢管混凝土结构在复杂受力状态下的工作机理研究[D]. 福州:福州大学,2006. [70] 韩林海. 钢管混凝土结构-理论与实践(第三版)[M]. 北京:科学出版社,2007. [72] 伍云天,代崇民,肖岩,周忠亮. 联肢钢-混凝土组合剪力墙端板螺栓式钢连梁抗震性能研究[J]. 土木工程学报,2014,47(12):39-48. |
中图分类号: | TU398.2 |
开放日期: | 2021-06-16 |