- 无标题文档
查看论文信息

论文中文题名:

 冻融岩石细观损伤识别及其宏观力学响应研究    

姓名:

 王云飞    

学号:

 20201106031    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0801    

学科名称:

 工学 - 力学(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 力学    

研究方向:

 岩体力学理论与应用    

第一导师姓名:

 张慧梅    

第一导师单位:

 西安科技大学    

第二导师姓名:

 张嘉凡    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Microscopic damage identification and macroscopic mechanical response of freeze-thaw rocks    

论文中文关键词:

 冻融岩石 ; CT图像 ; 细观损伤 ; 本构模型 ; 逆向建模    

论文外文关键词:

 freeze-thaw rock ; CT images ; meso-damage ; constitutive model ; reverse modeling    

论文中文摘要:

伴随“十四五”规划交通强国建设工程的持续推进,寒区岩土项目建设大幅增长,使得工程失稳、建筑倒塌等安全问题愈加凸显,冻融灾害防治成为亟待解决的关键问题。因此,本文以红砂岩为研究对象,基于冻融循环、CT扫描及物理力学特性试验,提取并量化冻融岩石细观特征信息,对细观损伤准确识别,并引入宏观力学模型,跨尺度研究冻融与荷载作用下岩石变形破坏行为,并实现含真实细观形貌特征的冻融岩石数值模拟计算。主要研究内容及结论如下:
(1) 冻融作用使得岩石宏观上出现颗粒剥落、裂纹及片落等破坏特征,试验过程中岩石顶、底部破损更为严重;随冻融循环次数的增加,岩石CT扫描图像整体灰度值下降,轴向方向上不同截面图像灰度均值曲线波动明显,但波动形式趋于一致,说明岩石内部细观结构各向异性显著,天然缺陷对于整个冻融过程存在持续性影响。
(2) 采用降噪滤波、边缘增强、形态学处理算法等图像处理技术,结合光线投射算法的三维重构技术,可在保留原始图像特征信息的条件下,直观展示不同冻融循环次数下岩石内部细观结构几何形态、空间分布的演化过程。图像处理结果表明:岩石在宏观层面发生破坏前,内部结构早已产生一系列复杂变化。
(3) 基于局部测量的像素单元覆盖法测得冻融循环过程中,岩石孔隙单元数量减少了91.6 %,平均体积增加97.1 %,平均表面积增加95.5 %;孔隙单元方位角在90°左右所占比例最大;更多的孔隙单元位移方向沿岩石由外向内,定量化地反映出冻融破坏在细观层面上是一个由表及里的损伤演化过程。
(4) 结合数字图像矩阵理论和分形理论,统计得到冻融循环过程中,岩石孔隙率由14.316 %上涨到54.497 %;孔隙分形维数由1.856下降到1.3843;孔隙连通程度增加4.27倍,说明在冻融作用下,岩石内部随机分布、复杂无序的天然微孔隙网络演变为大孔径连通孔隙和微孔隙并存的多尺度孔隙网络。
(5) 基于细观损伤力学方法,提取细观结构特征中的孔隙连通率定义岩石冻融损伤变量,弥补了传统损伤变量定义方法中损伤值绝对范围较小和未考虑天然损伤的不足,实现了同一损伤的跨尺度识别;建立的冻融岩石损伤本构关系与试验曲线吻合较好,从岩石细观结构变化的物理机制揭示了宏观岩石变形破坏机理。
(6) 从弹性力学理论“连续性假定”出发,提取出能够以最小体积反映出整体力学信息的岩石表征单元体,缓解数值计算压力;实现含真实形貌的冻融岩石数值模拟。由此发现荷载作用对于大孔径孔隙的局部损伤发育影响更为显著,而冻融作用更倾向于由表及里地对不同孔径孔隙产生持续破坏。

论文外文摘要:

In tandem with the continuous advancement of the transportation powerhouse construction project outlined in China's 14th Five-Year Plan, frigid regions in the country embrace new developmental missions. The construction of geotechnical engineering in cold regions has witnessed significant growth, exacerbating safety issues such as structural instability and building collapses. Consequently, addressing frost-related disasters has become a pressing concern. This study, therefore, investigates the characteristics of typical rocks in cold regions through freeze-thaw cycles, CT scans, and physico-mechanical property tests. By quantifying the microscopic features of frost-heaved rocks, we have accurately identified microscopic damage and incorporated it into macroscopic mechanical models. This multi-scale analysis examines the deformation and failure behavior of rocks under the combined effect of freeze-thaw and loading, culminating in a numerical simulation that incorporates authentic microscopic morphological features.
Freeze-thaw cycles result in macroscopic rock damage such as particle exfoliation, cracking, and flaking, with more severe deterioration occurring at the top and bottom of the rock. Moreover, the overall grayscale value of the rock CT scan images decreases during the freeze-thaw process, the grayscale mean curve fluctuates significantly, but the fluctuation forms tend to be consistent during the freeze-thaw process, which indicates significant anisotropy in the rock's internal microstructure and the persistent impact of natural defects.
By employing noise reduction filtering, edge enhancement, and morphological processing algorithms alongside three-dimensional reconstruction techniques using ray-casting algorithms, the evolution of the rock's internal microstructure's geometric morphology and spatial distribution is intuitively displayed at different freeze-thaw cycle stages, while preserving the original image's feature information. The findings reveal that complex internal structural changes have occurred in the rock prior to macroscopic failure.
Based on the local measurement of pixel unit coverage, it is observed that the number of rock pore units decreases by 91.6% during freeze-thaw cycles, while the average volume and surface area increase by 97.1% and 95.5%, respectively. Pore unit azimuth angles are predominantly centered around 90 degrees, and an outward-to-inward displacement direction is observed, suggesting that freeze-thaw damage evolution occurs from the exterior to the interior of the rock at the microscopic level.
Employing digital image matrix and fractal theories, we have ascertained that rock porosity escalates from 14.316% to 54.497% during freeze-thaw cycles, while pore fractal dimensions decrease from 1.856 to 1.3843. Pore connectivity surges by 4.27 times, reflecting the transformation of a randomly distributed, complex and disordered natural micro-pore network into a multi-scale pore network comprising large interconnected pores and micro-pores under the influence of freeze-thaw processes.
By utilizing micro-damage mechanics, we have extracted the pore connectivity rate as a defining variable for rock frost damage, addressing shortcomings in traditional damage variable definitions such as the limited absolute damage range and disregarding natural damage. This enables cross-scale identification of the same damage, and the established freeze-thaw loaded rock damage constitutive relation corresponds well with experimental curves, revealing the macroscopic rock deformation and failure mechanism from the perspective of the rock's microstructural changes.
Originating from the "continuity assumption" of elastic mechanics theory, we have identified the representative rock unit capable of reflecting the overall mechanical information of the rock with minimal volume, thereby alleviating numerical calculation stress. The numerical simulation, including authentic morphology, reveals that loading has a more pronounced impact on local damage development for large pore spaces, whereas freeze-thaw processes preferentially cause continuous damage from the surface to the interior for various pore sizes.

参考文献:

[1]杨针娘, 刘新仁, 曾群柱, 等. 中国寒区水文[M]. 北京: 科学出版社, 2002.

[2]中华人民共和国国民经济和社会发展第十四个五年计划和2035年远景目标纲要[M]. 北京: 人民出版社, 2021.

[3]杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(03): 545-563.

[4]徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究 [J]. 岩石力学与工程学报, 2005, 24(17): 3076-3082.

[5]Lemaitre J. A course on damage mechanics[M]. New York: Springer Verlag, 1992.

[6]Momeni A, Abdilor Y, Khanlari G R, et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology and the Environment, 2016, 75: 1649-1656.

[7]LUO X D, JIANG N, ZUO C Q, et al. Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze-thaw cycles[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1997-2004.

[8]Yang C, Zhou K, Xiong X, et al. Experimental investigation on rock mechanical properties and infrared radiation characteristics with freeze-thaw cycle treatment[J]. Cold Regions Science and Technology, 2021, 183(6): 103232.

[9]Khanlari G, Sahamieh R Z, Abdilor Y. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran[J]. Arabian Journal of Geosciences, 2015, 8(8): 5991-6001.

[10]Qiao C, Y Wang, Tong Y J, et al. Deterioration Characteristics of Pre-flawed Granites Subjected to Freeze-Thaw Cycles and Compression[J]. Geotechnical and Geological Engineering, 2021(2).

[11]Saad A, Guedon S, Martineau F. Microstructural weathering og sedimentary rocks bu freeze-thaw cycles: Experimental study of state and transfer paramenters[J]. COMPTES RENDUS GEOSCIENCE. 2010, 342(3): 197-203.

[12]Khanlari G, Abdilor Y. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran[J]. Bulletin of Engineering Geology and the Environment, 2015, 74: 1287-1300.

[13]Shi L, Liu Y, X Meng, et al. Study on Mechanical Properties and Damage Characteristics of Red Sandstone under Freeze-thaw and Load[J]. Advances in Civil Engineering, 2021, 2021(5):1-13.

[14]Karaca Z, Deliormanli A H, Elci H, et al. Effect of freeze-thaw process on the abrasion loss value of stones[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1207-1211.

[15]Javad Eslamia, Charlotte Walberta, Anne-LiseBeaucour, et al. Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2017, 162, 420-429.

[16]Yavuz H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone [J]. Bulletin of Engineering Geology and the Environment, 2011, 70(2): l87-192.

[17]Fatih B. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions [J]. Cold Regions Science and Technology 2012, 83-84: 98-102.

[18]Javier M M, David B, Miguel G H, et al. Non-linear decay of building stones during freeze-thaw weathering processes [J]. Construction and Building Materials, 2013, 38: 443-454.

[19]Al-Omari A, Beck K, Brunetaud X, et al. Critical degree of saturation: A control factor of freeze–thaw damage of porous limestones at Castle of Chambord, France[J]. Engineering Geology, 2015, 185:71-80.

[20]Chen T C, Yeung M R, Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.

[21]Fang X, Xu J, Wang P. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing[J]. Engineering Geology, 2018, 233:160-171.

[22]张慧梅, 杨更社, 岩石冻融力学试验及损伤扩展特性[J]. 中国矿业大学学报, 2011, 40(1): 140-151.

[23]张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 2013, 38(10): 1756-1762.

[24]刘向峰, 郭子钰, 王来贵, 等. 冻融循环作用下石窟砂岩物理力学性质损伤规律研究[J]. 实验力学, 2020, 35(05): 943-954.

[25]范云松, 丁军浩, 邓辉, 等. 冻融循环作用下英安岩力学及损伤特性研究[J]. 水电能源科学, 2017, 35(11): 99-102.

[26]王劲翔, 丁军浩, 邓辉, 等. 冻融循环条件下英安岩的物理力学特性试验研究[J]. 科学技术与工程, 2017, 17(17): 304-309.

[27]陈溯航, 李晓丽, 张强, 等. 鄂尔多斯红色砒砂岩冻融循环变形特性[J]. 中国水土保持科学, 2016, 14(4): 34-41.

[28]汤明高, 许强, 邓文锋, 等. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律[J]. 地球科学, 2022, 47(6): 1917-1931.

[29]闻磊, 李夕兵, 吴秋红, 等. 冻融循环作用下花岗斑岩动载强度研究[J]. 岩石力学与工程学报, 2015, 34(7): 1297-1306.

[30]李玉成, 陈有亮, 孙浩程, 等. 寒区花岗岩冻融损伤破坏的试验研究[J]. 工业建筑, 2019, 49(07): 83-88+107.

[31]陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(S1): 203-210.

[32]张慧梅, 孟祥振, 彭川, 等. 岩石变形全过程冻融损伤模型及其参数[J]. 西安科技大学学报. 2018, 38(2): 261-265.

[33]张慧梅, 孟祥振, 彭川, 等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型[J]. 煤炭学报, 2019, 44(11): 3404-3411.

[34]袁小清, 刘红岩, 刘京平. 冻融荷载耦合作用下节理岩体损伤本构模型[J].岩石力学与工程学报. 2015, (08)3: 258-265.

[35]Huang S, Liu Q, Cheng A, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150.

[36]张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.

[37]刘均荣, 秦积舜, 吴晓东. 温度对岩石渗透率影响的实验研究[J]. 石油大学学报(自然科学版), 2001(04): 51-53+5.

[38]陈蕴生, 刘晟锋, 李宁, 等. 裂隙对非贯通裂隙介质强度与变形特性影响的研究[J]. 西北农林科技大学学报(自然科学版), 2007(07): 207-212.

[39]陶纪南, 张克利, 郑晋峰. 岩石破坏过程声发射特征参数的研究[J]. 岩石力学与工程学报, 1996(S1): 452-455.

[40]王泳嘉, 冯夏庭. 化学环境侵蚀下的岩石破裂特性—第二部分: 时间分形分析[J]. 岩石力学与工程学报, 2000(05): 551-556.

[41]李俊平, 余志雄, 周创兵, 等. 水力耦合下岩石的声发射特征试验研究[J]. 岩石力学与工程学报, 2006(03): 492-498.

[42]Wang C, Chang X, Xiaoya D U. Rock acoustic emission signal processing method and spectrum analysis[J]. Industrial Minerals & Processing, 2019.

[43]El Omella M, Tang C A, Zhang Z. Scanning of essential minerals in granite electron microscope study on the microfracture behavior[J]. Geology and Resources, 2004, 13(3): 129-136.

[44]谢和平, 陈至达. 岩石断裂的微观机理分析[J]. 煤炭学报, 1989(02): 57-67.

[45]姚艳斌, 刘大锰, 黄文辉, 等. 两淮煤田煤储层孔裂隙系统与煤层气产出性能研究[J]. 煤炭学报, 2006(02): 163-168.

[46]耿乃光, 崔承禹, 邓明德. 岩石破裂实验中的遥感观测与遥感岩石力学的开端[J]. 地震学报, 1992(S1): 645-652.

[47]任建喜, 葛修润. 单轴压缩岩石损伤演化细观机理及其本构模型研究[J]. 岩石力学与工程学报, 2001, 20(4):425-425.

[48]王巍, 刘京红, 史攀飞. 基于CT 处理技术的岩石细观破裂过程的分形分析[J]. 河北农业大学学报, 2015(3):124-127.

[49]Appoloni C R, Fernandes C P, Rodrigues C R O. X-ray microtomography study of a sandstone reservoir rock[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(1): 629-632.

[50]朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(06): 1230-1238.

[51]马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发, 2014, 41(02): 227-233.

[52]De Argandona V G R, Rey A R, Celorio C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 633-637.

[53]杨更社, 蒲毅彬. 冻融循环条件下岩石损伤扩展研究初探[J]. 煤炭学报, 2002, 27(4): 357-360.

[54]Han N, Tian W. Experimental study on the dynamic mechanical properties of concrete under freeze-thaw cycles[J]. Structural Concrete, 2018, 19(5): 1353-1362.

[55]Ohtani T, Nakashima Y, Muraoka H. Three-dimensional miarolitic cavity distribution in the Kakkonda granite from borehole WD-1a using X-ray computerized tomography[J]. Engineering Geology, 2000, 56(1-2): 1-9.

[56]刘慧, 杨更社, 叶万军, 等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报, 2016, 33(06): 1130-1137.

[57]张慧梅, 王焕, 张嘉凡, 等. CT尺度下冻融岩石细观损伤特性分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(1): 51-56.

[58]田威, 韩女, 张鹏坤. 基于CT技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版), 2017, 48(11):3070-3076.

[59]王焕. 基于CT图像处理技术的冻融岩石细观损伤研究[D]. 西安科技大学, 2020.

[60]董方方, 朱谭谭, 屈子健. 基于颗粒流的富水岩石冻融后拉伸力学行为研究[J]. 河北工程大学学报 (自然科学版), 2021, 38(3): 22.

[61]慕娜娜. 冻融岩石CT图像处理及细观特性分析[D]. 西安科技大学, 2021.

[62]刘慧, 徐雅丽, 杨更社, 等. 冻融循环作用下含天然损伤砂岩破坏过程的数值试验研究[J]. 冰川冻土, 2022, 44(06): 1875-1886.

[63]孙宏琦, 施维颖, 巨永锋. 利用中值滤波进行图像处理[J]. 长安大学学报: 自然科学版, 2003, 23(2): 3.

[64]刘慧敏, 舒宁, 林卉. 图像边缘信息分析中数学形态学的应用方法[J]. 武汉大学学报(信息科学版), 2001(04): 325-330.

[65]张晗, 钱育蓉, 王跃飞, 等. 基于图像边缘增强与弱化的边缘检测[J]. 计算机工程与设计, 2019, 40(11): 3106-3110.

[66]余成波. 数字图像处理及MATLAB实现[M]. 重庆大学出版社, 2003.

[67]卢允伟, 陈友荣. 基于拉普拉斯算法的图像锐化算法研究和实现[J]. 电脑知识与技术, 2009(6): 3.

[68]张娜. 图像增强技术的研究[J]. 计算机仿真, 2007(01): 192-195.

[69]张慧梅, 王云飞. 冻融红砂岩损伤演化多尺度分析[J].岩土力学, 2022, 43(08): 2103 - 2114.

[70]Ostu N. A threshold selection method from gray-histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.

[71]孙惠杰, 邓廷权, 李艳超. 改进的分水岭图像分割算法[J]. 哈尔滨工程大学学报, 2014, 35(07): 857-864.

[72]Chen T, Wu Q.H, Rahmani-Torkaman R , et al. A pseudo top-hat mathematical morphological approach to edge detection in dark regions[J]. Pattern Recognition, 2002, 35(1): 199-210.

[73]李鑫. 基于CT的黄土微细观空隙结构及优先流特性研究[D]. 长安大学, 2020.

[74]FEI, SAS. Amira-Avizo Software 2019 User’s Guide[M].Zentrum fur Informationstechnik Berlin (ZIB), Germany:Thermo Fisher Scientific, 2019.

[75]Zhang S, Saxena N, Barthelemy P, et al. Poromechanics Investigation at Pore-scale Using Digital Rock Physics Laboratory[C]. Proc, The Proceedings of 2011 COMSOL Conference in Stuttgart; 2011.

[76]刘治清, 宋晶, 杨玉双, 等. 饱和细粒土固结过程的三维孔隙演化特征[J]. 工程地质学报, 2016, 24(05): 931-940.

[77]刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响. 地球物理学进展, 2017, 32(3): 1019-1028,

[78]巫旭狄, 鲁洪江, 郭波, 等. 基于数字岩心的哈得逊油田东河砂岩储层不同层理类型微观精细描述[J]. 成都理工大学学报(自然科学版), 2022, 49(05): 552-560.

[79]王刚, 沈俊男, 褚翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 042(008):2074-2080.

[80]Li X., Lu Y, Zhang X, et al. Quantification of macropores of Malan loess and the hydraulic significance on slope stability by X-ray computed tomography[J]. Environmental Earth Sciences, 2019, 78(16):522.

[81]Wei T, Fan W, Yuan W, et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau, China[J]. Environmental Earth Sciences, 2019, 78(11):333.

[82]Wei, Fan W, Yu B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess[J]. Catena, 2020, 2020(192):104585.

[83]谢和平, 薛秀谦. 分形应用中的数学基础与方法[M]. 科学出版社, 1998.

[84]周翠英, 梁宁, 刘镇. 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学. 2019, 40: 21-31.

[85]邹飞, 李海波, 周青春, 朱小明, 莫振泽, 何恩光, 赵羽. 基于数字图像灰度相关性的类岩石材料损伤分形特征研究[J]. 岩土力学, 2012, 33(3): 730-738.

[86]陈鑫, 张泽, 李东庆. 基于不同分形模型的冻融黄土孔隙特征研究[J]. 冰川冻土, 2019, 41(2): 1-11.

[87]严敏, 张彬彬, 李锦良, 等. 低透气性煤孔隙结构连通率对煤层渗透性的影响规律研究[J]. 煤矿安全, 2021, 52(4): 31-38.

[88]崔利凯, 孙建孟, 黄宏, 等. 高石梯-磨溪区块碳酸盐岩储层孔隙连通性综合评价[J]. 西安科技大学学报, 2019, 39(4): 634-643.

[89]孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发, 2016, 3.

[90]杨更社, 谢定义, 张长庆. 岩石损伤CT数分布规律的定量分析[J]. 岩石力学与工程学报, 1998(03): 279-280+289-285.

[91]杨更社, 刘慧. 基于CT图像处理技术的岩石损伤特性研究[J]. 煤炭学报, 2007(05): 463-468.

[92]刘泉声, 黄诗冰, 康永水, 等. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(06): 1116-1127.

[93]贾海梁, 刘清秉, 项 伟, 等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(增2): 3049-3055.

[94]Zhang R.R, Yang Y, Ma D.D, et al. Experimental study on effect of freeze-thaw cycles on dynamic mode-І fracture properties and microscopic damage evolution of sandstone. Engineering Fracture Mechanics, 2023, 279: 109043.

[95]刘慧, 杨更社, 申艳军, 等. 冻融–受荷协同作用下砂岩细观损伤演化CT可视化定量表征[J/OL]. 岩石力学与工程学报: 1-14 [2023-03-17].

[96]Koestel J, Larsbo M, Jarvis N. Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil[J]. Geoderma, 2020, 366: 114206.

[97]刘慧, 徐雅丽, 杨更社, 等. 冻融循环作用下含天然损伤砂岩破坏过程的数值试验研究[J]. 冰川冻土, 2022, 44(06):1875-1886.

[98]肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J/OL]. 岩土工程学报: 1-11[2023-03-17].

[99]谭皓, 宋勇军, 郭玺玺, 等. 冻融裂隙砂岩细观损伤与应变局部化研究[J]. 岩石力学与工程学报, 2022, 41(12): 2485-2496.

中图分类号:

 TU452    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式