- 无标题文档
查看论文信息

论文中文题名:

 富DEHP塑化剂柔性PVC废物在亚临界流体中的脱氯及资源转化研究    

姓名:

 谭小春    

学号:

 20209085032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0830    

学科名称:

 工学 - 环境科学与工程(可授工学、理学、农学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境科学与工程    

研究方向:

 固体废弃物处置与资源化    

第一导师姓名:

 修福荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-09    

论文外文题名:

 Dechlorination and resource transformation of flexible PVC wastes rich in DEHP plasticizer in critical fluid    

论文中文关键词:

 DEHP ; PVC废物 ; 脱氯 ; 协同作用 ; 资源化利用    

论文外文关键词:

 DEHP ; PVC waste ; Dechlorination ; Synergistic effects ; Resource utilization    

论文中文摘要:

聚氯乙烯(Polyvinyl chloride,PVC)作为全球第三大通用合成树脂,被广泛应用于国民经济的各个领域。塑化剂是柔性PVC中最主要的添加剂,邻苯二甲酸酯类(Phthalates, PAEs)塑化剂用量最多,其中邻苯二甲酸(2-乙基)己酯(Di-(2-ethylhexyl) Phthalate,DEHP)占50%。另外,PVC中还含有大量的氯。PVC废弃后不仅污染环境,还会威胁人类的健康,但由于氯和塑化剂含量较高,处理和资源化利用PVC废物面临巨大挑战。同时,高氮尿液废水、含镍电镀废水和油泥,这些废水、固体废弃物的无害化处理也被广泛关注。本论文分别将尿液废水、含油污泥与含镍电镀废水联合富DEHP柔性PVC废物共处理,构建了亚临界尿液废水(Subcritical urine wastewater,SUW)–PVC、亚临界水-含油污泥(Subcritical water - oily sludge,SW–OS)–PVC和亚临界含镍电镀废水(Subcritical nickel electroplating wastewater,SNEW)–PVC三个处理工艺,主要结果如下:

(1) 在SUW–PVC工艺中,通过富DEHP的PVC废物和尿液废水协同处理,可同步实现了PVC废物脱氯、DEHP分解和尿液废水脱氮的效果。①对于新鲜尿液废水,在最佳条件(300 ℃、15 min、1:5 g/mL)下,PVC废物脱氯率、尿液废水脱氮率和DEHP分解率分别可达98.4%、64.9%和99.2%。DEHP的分解主要包括水解、亲核取代和酰胺化。DEHP可在220 ℃转化为邻苯二甲酸晶体,产率为66.25%。羟基亲核取代是PVC的主要脱氯途径,脱除的氯全部从PVC基质转移到水相中。SUW中含氮物质与DEHP之间的反应有利于尿液废水的高效脱氮,氮元素被固定在固体残留物中或作为酰胺化合物转移到油相中。②对于水解尿液废水,温度以及固液比对脱氮作用影响不大,长停留时间有利于提高脱氮效果。在220 ℃(45 min、1:5 g/mL)时PVC废物的脱氯率为95.8%,尿液废水的脱氮率(50.7%)和DEHP的分解率(43.6%)较低。在300 ℃、15 min、1:5 g/mL条件下,PVC废物脱氯率、尿废水脱氮率及DEHP分解率分别是98.6%、59.7%和 100%。PVC废物的脱氯途径主要是羟基亲核取代和消去反应,羟基会进一步脱水羰基化,消去反应形成的不饱和键在氧介导作用下形成羰基或羧基,进一步被氨基取代,形成酰胺类物质。尿液废水中脱除的氮全部固定在固相残渣中,DEHP分解为苯甲酸、2-乙基-1-己醇、3-甲基-3-庚醇和苯酚。

(2) 在SW–OS–PVC工艺中,油泥与富DEHP塑化剂PVC废物在亚临界水中共反应,可同步实现PVC废物脱氯、DEHP分解及油泥分解。富DEHP塑化剂PVC废物与油泥的协同处理,在350 ℃(1 h、1:5 g/mL、油泥/PVC: 3/1)条件下,PVC废物可完全脱氯,同时促进油泥的分解,油泥将近69种的复杂化合物被降解为仅6种物质的高附加值油,含轻质油(31.74%)和3-乙基-己烯(34.44%)。反应时间过长会抑制PVC废物的脱氯及固体废物的减重效果,1小时为最佳时间。油泥与PVC废物的质量比对SW-OS处理效果影响较为显著,当油泥与PVC废物比值为1:3时,油泥产出轻质油的温度可降低到325℃,且可得到大量的苯甲酸(50.87%)。PVC废物的脱氯途径被认为是羟基亲核取代和消去反应分步进行的,300 ℃时主要以羟基亲核取代为主;325 ℃时羟基亲核取代和消去反应共存;随着温度升高,350 ℃时羟基亲核取代行为增强,消去反应逐渐减弱。

(3) 在SNEW–PVC工艺中,含镍电镀废水作为反应介质与富DEHP塑化剂PVC废物共反应,高温、短时间以及较大的固液比对PVC废物脱氯有利。SNEW工艺对含镍电镀废水中Ni2+ 的去除效果较好,温度及反应时间对PVC废物的碳化程度、团聚程度以及减重效果影响较大。含镍电镀废水中的Ni2+ 对PVC废物的脱氯有着促进作用,可促进PVC废物基质多孔结构的形成,有利于PVC废的传热与传质。在250 ℃、15 min、1:5 g/ml条件下,PVC脱氯率为83.93%,延长时间到30分钟对PVC废物脱氯有促进作用(90.21%)。过长的反应时间 (60 min)或固液比过小(1:15 g/mL)会导致PVC废物基质孔隙堵塞,降低脱氯效果。PVC废物的脱氯机制为羟基亲核取代和消去反应,羟基进一步羰基化,烯烃在氧介导作用下也会产生羰基。在含镍电镀废水中,Ni2+ 既发生氧化反应生成NiO2,又发生还原反应生成Ni,并被PVC废物残渣吸附,高附加值化合物可通过分离提纯再利用。

论文外文摘要:

Polyvinyl chloride (PVC), as the third largest universal synthetic resin in the world, is widely used in various economic fields. Plasticizer is the most important additive in flexible PVC, with phthalates (PAEs) having the highest dosage of plasticizers, with Di - (2-ethylhexyl) phthalate (DEHP) accounting for 50%. At the same time, PVC also contains a large amount of chlorine. The waste of PVC not only pollutes the environment but also poses a threat to human health. However, due to the high content of chlorine and plasticizers, the treatment and resource utilization of PVC waste face enormous challenges. At the same time, the harmless treatment of high nitrogen urine wastewater, nickel containing electroplating wastewater, and oil sludge, as well as solid waste, has also received widespread attention. This paper co treated urine wastewater, oily sludge, and nickel containing electroplating wastewater with rich DEHP flexible PVC waste, and constructed three treatment processes: subcritical urine wastewater (SUW)-PVC, subcritical water oily sludge (SW-OS)-PVC, and subcritical nickel electroplating wastewater (SNEW)-PVC. The main results are as follows:

(1) In the SUW-PVC process, the collaborative treatment of PVC waste rich in DEHP and urine wastewater simultaneously achieves dechlorination of PVC waste, decomposition of DEHP, and denitrification of urine wastewater.For fresh urine wastewater, under the optimal conditions (300 ℃, 15 min, 1:5 g/mL), the dechlorination rate of PVC waste, denitrification rate of urine wastewater, and DEHP decomposition rate can reach 98.4%, 64.9%, and 99.2%, respectively. The decomposition of DEHP mainly includes hydrolysis, nucleophilic substitution and amidation. DEHP can be converted into phthalic acid crystals at 220 ℃ with a yield of 66.25%. Hydroxyl nucleophilic substitution is the main dechlorination route of PVC, and all the chlorine removed is transferred from the PVC matrix to the aqueous phase. The reaction between nitrogen containing substances in SUW and DEHP is conducive to efficient denitrification of urine wastewater, and nitrogen elements are fixed in solid residues or transferred to the oil phase as amide compounds. For hydrolyzed urine wastewater, temperature and solid-liquid ratio have little effect on denitrification, and long residence time is beneficial for improving denitrification efficiency. At 220 ℃ (45 min, 1:5 g/mL), the dechlorination rate of PVC waste is 95.8%, while the denitrification rate of urine wastewater (50.7%) and the decomposition rate of DEHP (43.6%) are relatively low. Under the conditions of 300 ℃, 15 min, and 1:5 g/mL, the dechlorination rate of PVC waste, denitrification rate of urine wastewater, and DEHP decomposition rate are 98.6%, 59.7%, and 100%, respectively. The dechlorination path of PVC waste is mainly the hydroxyl nucleophilic substitution and elimination reaction. The hydroxyl will further dehydrate carbonylation, and the unsaturated bond formed by the elimination reaction will form carbonyl or carboxyl under the oxygen mediated action, which will be further replaced by amino to form amide substances. All nitrogen removed from urine wastewater is fixed in solid residue, and DEHP is decomposed into benzoic acid, 2-ethyl-1-hexanol, 3-methyl-3-heptanol and phenol.

(2) In the SW-OS-PVC process, oil sludge reacts with PVC waste rich in DEHP plasticizer in subcritical water, and the dechlorination, DEHP decomposition, and oil sludge decomposition of PVC waste can be achieved simultaneously. The synergistic treatment of PVC waste rich in DEHP plasticizer and oil sludge results in complete dechlorination of PVC waste at 350 ℃ (1 h, 1:5 g/mL, oil sludge/PVC: 3/1), while promoting the decomposition of oil sludge. The oil sludge is degraded from nearly 69 complex compounds to only 6 high value-added oils, containing light oil (31.74%) and 3-ethylhexene (34.44%). If the reaction time is too long, it will inhibit the dechlorination of PVC waste and the weight reduction effect of solid waste, with 1 hour being the best. The quality ratio of oil sludge to PVC waste has a significant impact on the SW-OS treatment effect. When the ratio of oil sludge to PVC waste is 1:3, the temperature of light oil produced by the oil sludge decreases to 325 ℃, and 50.87% benzoic acid can be obtained. The dechlorination of PVC waste is considered to be a step by step process of hydroxyl nucleophilic substitution and elimination reaction. At 300 ℃, hydroxyl nucleophilic substitution is the main way; At 325 ℃, hydroxyl nucleophilic substitution and elimination reactions coexist; With the increase of temperature, the nucleophilic substitution behavior of hydroxyl group increases and the elimination reaction weakens gradually at 350 ℃.

(3) In the SNEW-PVC process, nickel containing electroplating wastewater is used as a reaction medium to co react with PVC waste rich in DEHP plasticizer. High temperature, short time, and large solid-liquid ratio are beneficial for dechlorination of PVC waste. The SNEW process has a good removal effect on Ni2+ in nickel containing electroplating wastewater. Temperature and reaction time have a significant impact on the degree of carbonization, agglomeration, and weight reduction of PVC waste. The Ni2+ in nickel containing electroplating wastewater has a promoting effect on the dechlorination of PVC waste. Ni2+ can promote the formation of porous structures in the PVC waste matrix, which is beneficial for the heat and mass transfer of PVC waste. Under the conditions of 250 ℃, 15 minutes, and 1:5 g/ml, the dechlorination rate of PVC was 83.93%. Prolonged time (30 min) had a promoting effect on the dechlorination of PVC waste (90.21%). Long reaction time (60 min) or low solid-liquid ratio (1:15 g/mL) can lead to pore blockage in the PVC waste matrix, reducing the dechlorination effect. The dechlorination mechanism of PVC waste is hydroxyl nucleophilic substitution and elimination reaction. The hydroxyl is further carbonylation, and olefins will also produce carbonyl under the oxygen mediated action. The Ni2+ in nickel containing electroplating wastewater undergoes both oxidation reaction to generate NiO2 and reduction reaction to generate Ni, which is adsorbed by PVC waste residue. High value-added compounds can be separated, purified, and reused.

参考文献:

[1] Adebiyi-Abiola B, Assefa S, Sheikh K, et al. Cleaning up plastic pollution in Africa[J]. Science, 2019,365(6459):1249-1251.

[2] Bergmann M, Collard F, Fabres J, et al. Plastic pollution in the Arctic[J]. Nature Reviews Earth & Environment, 2022,3(5):323-337.

[3] Carpenter E J, Smith Jr K L. Plastics on the Sargasso Sea surface[J]. Science, 1972,175(4027):1240-1241.

[4] Carpenter E J, Anderson S J, Harvey G R, et al. Polystyrene spherules in coastal waters[J]. Science, 1972,178(4062):749-750.

[5] Ostle C, Thompson R C, Broughton D, et al. The rise in ocean plastics evidenced from a 60-year time series[J]. Nature communications, 2019,10(1):1622-1628.

[6] Lau W W, Shiran Y, Bailey R M, et al. Evaluating scenarios toward zero plastic pollution[J]. Science, 2020,369(6510):1455-1461.

[7] Borrelle S B, Ringma J, Law K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020,369(6510):1515-1518.

[8] Soares J, Miguel I, Venâncio C, et al. Public views on plastic pollution: Knowledge, perceived impacts, and pro-environmental behaviours[J]. Journal of Hazardous Materials, 2021,412(934):125227-125534.

[9] Hartley B L, Sabine P, Joana V, et al. Exploring public views on marine litter in Europe: Perceived causes, consequences and pathways to change[J]. Marine Pollution Bulletin, 2018,133(578):S25326X-S18303904X.

[10] Jansen T, Claassen L, van Kamp I, et al. ‘All chemical substances are harmful.’public appraisal of uncertain risks of food additives and contaminants[J]. Food and Chemical Toxicology, 2020,136(5):110959-110969.

[11] Dees J P, Ateia M, Sanchez D L. Microplastics and their degradation products in surface waters: a missing piece of the global carbon cycle puzzle[J]. ACS ES&T Water, 2020,1(2):214-216.

[12] 2021年固体废物处理利用行业综述与2022年发展展望[J].中国轮胎资源综合利用,2022,No.298(04):10-18.

[13] Borrelle S B, Ringma J, Law K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020,369(6510):1515-1518.

[14] Sun Y, Liu S, Wang P, et al. China's roadmap to plastic waste management and associated economic costs[J]. Journal of Environmental Management, 2022,309(35):114686-114698.

[15] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances,3(7):e1700782.

[16] Liu Y, Zhou C, Li F, et al. Stocks and flows of polyvinyl chloride (PVC) in China: 1980-2050[J]. Resources, Conservation and Recycling, 2020,154(5):104584-104593.

[17] Zimmermann L, Dierkes G, Ternes T A, et al. Benchmarking the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products[J]. Environmental Science & Technology, 2019,53(19):11467-11477.

[18] 张键,高自建,玄成英.国内PVC行业的生产现状及发展趋势[J].中国氯碱,2021(10):1-5+32.

[19] 吴茂英. PVC润滑剂及其应用:原理与技术[M]. PVC润滑剂及其应用:原理与技术, 2016.

[20] Kim D Y, Chun S, Jung Y, et al. Phthalate plasticizers in children’s products and estimation of exposure: Importance of migration rate[J]. International journal of environmental research and public health, 2020,17(22):8582-8590.

[21] S Rensen L K. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry.[J]. Rapid Commun Mass Spectrom, 2010,20(7):1135-1143.

[22] McCombie G, Harling A, Biedermann M, et al. Survey of plasticizers migrating from the gaskets of lids into oily food in glass jars: The second European enforcement campaign shows poor compliance work[J]. Food Control, 2015,50(5):65-71.

[23] Holadová K I, Pková G P, Lová J H, et al. Headspace solid-phase microextraction of phthalic acid esters from vegetable oil employing solvent based matrix modification[J]. Analytica Chimica Acta, 2007,582(1):24-33.

[24] Trebušak T, Levart A, Salobir J, et al. Effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids[J]. Meat Science, 2014,96(3):1275-1280.

[25] 李田. PVC水热脱氯特性实验研究[D].中国矿业大学,2018.

[26] Zhou Q, Tang C, Wang Y Z, et al. Catalytic degradation and dechlorination of PVC-containing mixed plastics via Al–Mg composite oxide catalysts[J]. Fuel,2004,83(13):1727-1732.

[27] Hui, Zhou, AiHong, et al. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis, 2014,108(1):19-25.

[28] Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS[J]. Waste Management, 2014,34(3):676-682.

[29] Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS[J]. Waste Management, 2014,34(3):676-682.

[30] Wang L C, Lee W J, Lee W S, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans[J]. Science of the Total Environment, 2003,302(1/3):185-198.

[31] Ma S, Lu J, Gao J. Study of the Low Temperature Pyrolysis of PVC[J]. Energy & Fuels, 2002,16(2):338-342.

[32] Qing-lei, SUN, And, et al. Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC[J]. Journal of China University of Mining & Technology, 2007(02):242-245.

[33] Lu J, Ma S, Gao J. Study on the Pressurized Hydrolysis Dechlorination of PVC[J]. Energy & Fuels, 2002,16(5):1251-1255.

[34] Zinovyev S, Shelepchikov A, Tundo P. Design of new systems for transfer hydrogenolysis of polychlorinated aromatics with 2-propanol using a Raney nickel catalyst[J]. Applied Catalysis B Environmental, 2007,72(3-4):289-298.

[35] Yoshioka T, Kameda T, Ieshige M, et al. Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution[J]. Polymer Degradation & Stability, 2008,93(10):1822-1825.

[36] Hashimoto K, Suga S, Wakayama Y, et al. Hydrothermal dechlorination of PVC in the presence of ammonia[J]. Journal of Materials Science, 2008,43(7):2457-2462.

[37] Yingying, Jiahuan, Yifan, et al. A novel treatment method of PVC-medical waste by near-critical methanol: Dechlorination and additives recovery.[J]. Waste management (New York, N.Y.), 2018,8(52):1-9.

[38] Xiu F R, Wang Y, Yu X, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment[J]. The Science of the Total Environment, 2020,708(Mar.15):134531-134532.

[39] 方程冉,陈川龙,项硕.邻苯二甲酸酯类增塑剂降解研究进展[J].浙江科技学院学报,2006(04):286-290.

[40] Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015,528(7580):51-59.

[41] Höglund C. Evaluation of microbial health risks associated with the reuse of source-separated humna urine[Z]. Bioteknologi, 2001.

[42] Mihelcic J R, Fry L M, Shaw R. Global potential of phosphorus recovery from human urine and feces[J]. Chemosphere, 2011,84(6):832-839.

[43] 宗悦,王祎涵.改性木屑对尿液废水中氨氮的吸附性能研究[J].供水技术,2021,15(3):5-13.

[44] Mihelcic J R, Fry L M, Shaw R. Global potential of phosphorus recovery from human urine and feces[J]. Chemosphere, 2011,84(6):832-839.

[45] Kodys A, Choueiri E. A Critical Review of the State-of-the-Art in the Performance of Applied-Field Magnetoplasmadynamic Thrusters: Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit, 2013[C].

[46] 康赛.尿液膜蒸馏性能评估与膜污染机制研究[D].河北工程大学, 2021.

[47] Park Y, Park S, Nguyen V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal, 2017,316(Complete):673-679.

[48] Larsen T A, Gujer W. Separate management of anthropogenic nutrient solutions (human urine)[J]. Water Science and Technology, 1996,34(3–4):87-94.

[49] Mobley H L T, Hausinger R P. Microbial ureases: significance, regulation, and molecular characterization.[J]. Microbiological Reviews, 1989,53(1):85-93.

[50] Zhao Q B, Ma J, Zeb I, et al. Ammonia recovery from anaerobic digester effluent through direct aeration - ScienceDirect[J]. Chemical Engineering Journal, 2015,279:31-37.

[51] Barbosa S G, Peixoto L, Meulman B, et al. A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources[J]. Chemical Engineering Journal, 2016:146-153.

[52] Ledezma P, Kuntke P, Buisman C, et al. Source-separated urine opens golden opportunities for microbial electrochemical technologies[J]. Trends in Biotechnology, 2015,33(4):214-220.

[53] Christiaens M E R, Udert K M, Arends J, et al. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants.[J]. Elsevier BV, 2019,150(6):349-357.

[54] H., KirchmannS., Pettersson. Human urine - Chemical composition and fertilizer use efficiency[J]. Nutrient Cycling in Agroecosystems, 1994,40(2):149-154.

[55] Udert K M, Wtfchter M. Complete nutrient recovery from source-separated urine by nitrification and distillation[J]. Water Research, 2012,46(2):453-464.

[56] Maurer M, Pronk W, Larsen T A. Treatment processes for source-separated urine[J]. Water research, 2006,40(17):3151-3166.

[57] Ishii S K L, Boyer T H. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management[J]. Water Research, 2015,79:88-103.

[58] Mitrogiannis D, Psychoyou M, Koukouzas N, et al. Phosphate recovery from real fresh urine by Ca(OH)2 treated natural zeolite[J]. Chemical Engineering Journal, 2018,347:618-630.

[59] Lind B, Ban Z, Bydén S. Volume reduction and concentration of nutrients in human urine[J]. Ecological Engineering, 2001,16(4):561-566.

[60] Antonini S, Nguyen P T, Arnold U, et al. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam[J]. Science of The Total Environment, 2012,414:592-599.

[61] 王健行.密闭生保系统中基于盐回收的纳滤膜技术及膜污染防治[D].中国科学院研究生院, 2016.

[62] Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: A review[J]. Journal of Hazardous Materials, 2013,261(11):470-490.

[63] Jerez S, Ventura M, Molina R, et al. Comprehensive characterization of an oily sludge from a petrol refinery: A step forward for its valorization within the circular economy strategy[J]. Journal of Environmental Management, 2021,285(9):112124.

[64] Yeletsky P M, Zaikina O O, Sosnin G A, et al. Heavy oil cracking in the presence of steam and nanodispersed catalysts based on different metals[J]. Fuel Processing Technology, 2020,199:106239.

[65] Li J, Lin F, Li K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J]. Journal of Hazardous Materials, 2021,406(467):124706-124715.

[66] 陈明燕,刘政,王晓东,等.含油污泥无害化及资源化处理新技术及发展方向[J].石油与天然气化工, 2011,40(3):5-12.

[67] 柳亚,齐锁平,邓龙斌,等.含油污泥处理技术研究进展[J].石油管材与仪器,2023,9(02):1-7.

[68] 王爱军,骆伟,周志勇,等.油田污泥无害化及资源化处理技术探讨[J].化工环保, 2011,31(5):5-13.

[69] 何翼云,回军,杨丽,等.含油污泥处理方法探讨[J].化工环保,2012,32(4):4-10.

[70] 丁安军,王雨辰,廖长君,等.钻井含油污泥高温热解处理技术研究应用[J].石油地质与工程, 2018,32(5):2-11.

[71] 刘发强,曲天煜,张媛.炼油厂含油污泥处理技术进展[J].工业水处理, 2017,37(12):5-12.

[72] 吴姁,夏瑜,马嘉欣,等.典型石油工业含油污泥处理技术及其应用[J].应用化工,2020,49(11):2890-2895.

[73] Savage P E. Organic Chemical Reactions in Supercritical Water[J]. Chemical Reviews, 1999,99(2):603-622.

[74] Gao N, Duan Y, Li Z, et al. Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering[J]. Journal of Hazardous Materials, 2021,4029(1136):124173-124186.

[75] Teo C C, Tan S N, Yong J W H, et al. Pressurized hot water extraction (PHWE)[J]. Journal of Chromatography A, 2010,1217(16):2484-2494.

[76] Arcelus-Arrillaga P, Pinilla J L, Hellgardt K, et al. Application of Water in Hydrothermal Conditions for Upgrading Heavy Oils: A Review[J]. Energy & Fuels, 2017,31(5):4571-4587.

[77] Wei N, Xu D, Hao B, et al. Chemical reactions of organic compounds in supercritical water gasification and oxidation[J]. Water Research, 2021,190(175):116634-116644.

[78] Li J, Lin F, Li K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J]. Journal of Hazardous Materials, 2021,406(165):124706-124713.

[79] Adeniyi K I, Zirrahi M, Hassanzadeh H. Phase equilibria of water-hydrocarbon (pentane to heavy oils) systems in the near-critical and supercritical water regions - A literature review[J]. The Journal of Supercritical Fluids, 2021,178(662):105356-105364.

[80] Chen Z, Tong K, He C, et al. High quality oil recovery from oil-based drill cuttings via catalytic upgrading in presence of near-/supercritical water and different industrial wastes[J]. Journal of Cleaner Production, 2021,321(674):129061-129077.

[81] Liu J, Zhang Y, Peng K, et al. A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism[J]. Journal of Hazardous Materials, 2021,415(557):125624-125636.

[82] Cocero M J, Alonso E, Sanz M T, et al. Supercritical water oxidation process under energetically self-sufficient operation[J]. The Journal of Supercritical Fluids, 2002,24(1):37-46.

[83] García-Rodríguez Y, Mato F A, Martín A, et al. Energy recovery from effluents of supercritical water oxidation reactors[J]. The Journal of Supercritical Fluids, 2015,104(1):1-9.

[84] Jimenez-Espadafor F, Portela J R, Vadillo V, et al. Supercritical Water Oxidation of Oily Wastes at Pilot Plant: Simulation for Energy Recovery[J]. Industrial & Engineering Chemistry Research, 2011,50(2):775-784.

[85] Lavric E D, Weyten H, De Ruyck J, et al. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process[J]. Energy Conversion and Management, 2005,46(9):1345-1364.

[86] Kou J, Xu J, Jin H, et al. Evaluation of modified Ni/ZrO2 catalysts for hydrogen production by supercritical water gasification of oil-containing wastewater[J]. International Journal of Hydrogen Energy, 2018,43(30):13896-13903.

[87] Kou J, Yi L, Li G, et al. Structural effect of ZrO2 on supported Ni-based catalysts for supercritical water gasification of oil-containing wastewater[J]. International Journal of Hydrogen Energy, 2021,46(24):12874-12885.

[88] Xu J, Kou J, Guo L, et al. Experimental study on oil-containing wastewater gasification in supercritical water in a continuous system[J]. International Journal of Hydrogen Energy, 2019,44(30):15871-15881.

[89] Zhiyong Y, Xiuyi T. Hydrogen generation from oily wastewater via supercritical water gasification (SCWG)[J]. Journal of Industrial and Engineering Chemistry, 2015,23(1):44-49.

[90] Cherad R, Onwudili J A, Biller P, et al. Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae[J]. Fuel, 2016,1669(1):24-28.

[91] Duan P, Yang S, Xu Y, et al. Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass[J]. Energy, 2018,155:734-745.

[92] Shan Y, Yin L, Djandja O S, et al. Supercritical water gasification of waste water produced from hydrothermal liquefaction of microalgae over Ru catalyst for production of H2 rich gas fuel[J]. Fuel, 2021,292(56):120288-120294.

[93] Djimasbe R, Varfolomeev M A, Al-muntaser A A, et al. Deep Insights into Heavy Oil Upgrading Using Supercritical Water by a Comprehensive Analysis of GC, GC–MS, NMR, and SEM–EDX with the Aid of EPR as a Complementary Technical Analysis[J]. ACS Omega, 2021,6(1):135-147.

[94] Adeniyi K I, Zirrahi M, Hassanzadeh H. Phase equilibria of water-hydrocarbon (pentane to heavy oils) systems in the near-critical and supercritical water regions - A literature review[J]. The Journal of Supercritical Fluids, 2021,178(37):105356-105366.

[95] Ding X, Lei Y, Shen Z, et al. Experimental Determination and Modeling of the Solubility of Sodium Chloride in Subcritical Water from (568 to 598) K and (10 to 25) MPa[J]. Journal of Chemical & Engineering Data, 2017,62(10):3374-3390.

[96] Sato T, Trung P H, Tomita T, et al. Effect of water density and air pressure on partial oxidation of bitumen in supercritical water[J]. Fuel, 2012,95:347-351.

[97] Vilcáez J, Watanabe M, Watanabe N, et al. Hydrothermal extractive upgrading of bitumen without coke formation[J]. Fuel, 2012,102(23):379-385.

[98] Hosseinpour M, Ahmadi S J, Fatemi S. Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part I: Non-catalytic cracking[J]. The Journal of Supercritical Fluids, 2016,107(11):278-285.

[99] Liu Y, Bai F, Zhu C, et al. Upgrading of residual oil in sub- and supercritical water: An experimental study[J]. Fuel Processing Technology, 2013,106(11):281-288.

[100] Chen Z, Zheng Z, He C, et al. Oily sludge treatment in subcritical and supercritical water: A review[J]. Journal of hazardous materials, 2022(Jul.5):433-455.

[101] Al-Muntaser A A, Varfolomeev M A, Suwaid M A, et al. Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions[J]. Journal of Petroleum Science and Engineering, 2020,184(97):106592-10606.

[102] Guo K, Li H, Yu Z. In-situ heavy and extra-heavy oil recovery: A review[J]. Fuel, 2016,185:886-902.

[103] Chun-Teh L I, Lee W J, Huang K L, et al. Vitrification of chromium electroplating sludge[J]. Environmental Science & Technology, 2007,41(8):2950-2956.

[104] Hz A, Gz A, Qiang G A, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal, 2019,379(67):122304-122316.

[105] Magalhaes J, Silva J, Castro F, et al. Physical and chemical characterisation of metal finishing industrial wastes[J]. Journal of Environmental Management, 2005,75(2):157-166.

[106] 陈妍娜.电渗析处理电镀镍回收液的研究[D].五邑大学, 2016.

[107] 聂颖.电镀含镍废水的处理[D].大连理工大学, 2018.

[108] Meyer J S, Santore R C, Bobbitt J P, et al. Binding of Nickel and Copper to Fish Gills Predicts Toxicity When Water Hardness Varies, But Free-Ion Activity Does Not[J]. Environmental Science & Technology, 2016,33(6):913-916.

[109] Biol M C, Zhitkovich A, Christie N T, et al. Carcinogenic Nickel Silences Gene Expression by Chromatin Condensation and DNA Methylation: a New Model[J]. 1995,15(5):2547-2557.

[110] Zhang B W, Liao S Z, Xie H W, et al. Progress of electroless amorphous and nanoalloy deposition: a review - Part 1[J]. Transactions of the Imf, 2013,91(6):310-318.

[111] 肖隆庚.含镍电镀废水处理技术研究概述[J].广东化工, 2016,43(3):3-9.

[112] 张若纯.高级氧化降解尿液及污水中若干种药物类污染物的研究[D].天津大学, 2016.

[113] Lin S, Zhang T, Liang Z. Wet Treatment of Ni-Containing Electroplating Wastewater Doped with Fe and Co as a Hydrogen Evolution Catalyst[J]. Energy & Fuels, 2022(7):36-44.

[114] 徐国敏,秦舒浩,鲁圣军,等. PVC的环境问题[J].聚氯乙烯, 2007(11):4-9.

[115] 于清江,武建功.也谈氨水受热时的电离[J].化学教学, 2001,000(002):45-46.

[116] 郭亚菲.醛与醇/胺的氧化C-O/C-N偶联反应和机理研究[D].中国科学院研究生院(过程工程研究所), 2016.

[117] Urgoitia G, SanMartin R, Herrero M T, et al. Aerobic cleavage of alkenes and alkynes into carbonyl and carboxyl compounds[J]. ACS Catalysis, 2017,7(4):3050-3060.

[118] Urgoitia G, SanMartin R, Herrero M T, et al. Aerobic Cleavage of Alkenes and Alkynes into Carbonyl and Carboxyl Compounds[J]. ACS Catalysis, 2017,7(4):3050-3060.

中图分类号:

 X705    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式