- 无标题文档
查看论文信息

题名:

 LiMgPO4基低介陶瓷的工艺优化和微波介电性能研究    

作者:

 杨哲    

学号:

 20211225047    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 功能材料    

导师姓名:

 刘向春    

导师单位:

 西安科技大学    

提交日期:

 2023-06-19    

答辩日期:

 2023-06-03    

外文题名:

 Optimization of process and microwave dielectric properties investigation of low dielectric ceramic LiMgPO4    

关键词:

 微波介质陶瓷 ; LiMgPO4 ; 冷烧结 ; 第一性原理计算    

外文关键词:

 Microwave dielectric ceramics ; LiMgPO4 ; ; Cold Sintering Process ; Key words: The first-principle calculation    

摘要:

新型微波通讯技术和毫米波元件的迅速发展对低介微波介质陶瓷性能提出了更高的要求,LiMgPO4陶瓷在微波频段具有低介电常数εr以及高的品质因数Q,是制作微波器件的一种优秀候选材料,但其谐振频率温度系数τf为一较大负值,影响器件工作的温度稳定性,而且其较高的烧结温度也限制了该材料在低温共烧陶瓷(LTCC)技术中的应用。因此,调节陶瓷的τf值以及开发新工艺,实现LiMgPO4陶瓷的低温制备,对实现能源节约以及拓展微波介质陶瓷低温烧结工艺具有重要的意义和应用价值。

本文研究了不同原料活性对制备LiMgPO4陶瓷的影响,在此基础上采用Cu2+和V5+分别对LiMgPO4的Mg位与P位进行取代掺杂,确定最佳的取代组分。通过将Ba3(VO4)2与最佳离子取代组分相复合的方式,调节谐振频率温度系数近零,同时降低陶瓷的烧结温度;采用冷烧结工艺制备LiMgPO4陶瓷,系统研究了不同单轴压力、烧结温度以及保温时间对陶瓷结构和性能的影响,确定最佳的冷烧结工艺参数,基于此,将聚四氟乙烯(PTFE)与LiMgPO4陶瓷进行复合共烧,进一步优化陶瓷的结构和性能。上述研究获得以下主要结论:

研究不同原料活性对LiMgPO4陶瓷的影响,发现采用碱式碳酸镁为原料能够有效降低陶瓷的烧结温度,并且在950°C烧结温度下可制备得到结晶度高、晶粒生长均匀、相对密度ρr为93.5%的LiMgPO4陶瓷。通过采用Cu2+和V5+分别对LiMgPO4的Mg位与P位进行取代,结果表明,当Cu2+的取代量x=0.04mol时,在900oC烧结温度下陶瓷获得最优性能:ρr = 95.49%,εr = 7.06,tanδ = 2.34×10-3;V5+的取代量x=0.02mol时,于950oC烧结温度下陶瓷获得最优性能:ρr = 96.37%,εr = 6.82,tanδ = 1.58×10-3。实验结果表明,随着烧结温度的升高,P位取代较Mg位取代陶瓷具有更为稳定的结构。

采用Rietveld方法对LiMgPO4和LiMg(P0.98V0.02)O4的结构进行了精修,获得了本实验条件下两种物相结构的原子占位和晶体结构参数,在此基础上进行了两种化合物的第一性原理计算。结构精修结果进一步验证了V对P的取代能够提高陶瓷结构稳定性。计算结果表明,V对P的取代增大了晶胞参数,降低了禁带宽度,提高了弹性模量,这有利于提高陶瓷的结构稳定性,且使得陶瓷介电常数减小,谐振频率温度系数更趋近于零。

(3)将添加剂Ba3(VO4)2与离子取代性能最好的LiMg(P0.98V0.02)O4进行复合,制备得到(1-x)LiMg(P0.98V0.02)O4-xBa3(VO4)2复相陶瓷。结果表明,Ba3(VO4)2的加入显著降低了陶瓷的烧结温度并提升了陶瓷的致密度;各组分晶粒生长相对均匀,随着Ba3(VO4)2加入量的增大,复相陶瓷晶粒尺寸逐渐减小,介电常数εr逐渐增大,Q×f值逐渐减小,τf值不断向正值趋近。当Ba3(VO4)2添加量x=0.5时,复相陶瓷在850oC保温2h条件下获得近零的τf值,微波介电性能达到最佳:εr = 9.26,Q×f = 25412 GHz,τf =-1.53 ppm/°C。

(4)通过对冷烧结工艺制备LiMgPO4(简写为LMP)研究发现,在一定范围内,单轴压力和烧结温度的升高均有助于陶瓷的致密化;合适的保温时间能够促进颗粒完全生长,保温时间过长反而会阻碍陶瓷的致密化进程。在单轴压力600MPa、温度200oC以及保温时间30min的条件下,冷烧结LMP综合性能达到最优:ρr = 93.1%,εr = 5.12,tanδ = 6.87×10-3。为进一步优化LMP的介电性能,以聚四氟乙烯(PTFE)为冷烧结工艺的中间溶剂和陶瓷改性剂,制备得到(1-x)LMP-xPTFE无机—有机复相陶瓷,研究发现,在单轴压力600MPa、温度200oC、保温时间30min的条件下,随着PTFE质量分数的增加,陶瓷的Q×f值逐渐增大,当x=0.4时,(1-x)LMP-xPTFE的微波介电性能达到最佳,为εr = 2.80,Q×f = 9711 GHz,τf =-39.84 ppm/°C。

外文摘要:

The rapid development of new microwave communication technology and millimeter-wave components has posed higher requirements on the performance of low dielectric microwave ceramic materials. LiMgPO4 ceramic material has a low dielectric constant εr and a high quality factor Q in the microwave frequency band, making it an excellent candidate material for the fabrication of microwave devices. However, its resonant frequency temperature coefficient τf is a large negative value, which affects the temperature stability of the device operation. Moreover, its high sintering temperature also limits its practical applications. Therefore, adjusting the τf value of the ceramic material and developing new processes to achieve low-temperature preparation of LiMgPO4 ceramics are of great significance and application value for achieving energy conservation and expanding low-temperature sintering processes of microwave dielectric ceramics.

This article investigates the influence of different raw material activities on the preparation of LiMgPO4 ceramics. Based on this, Cu2+ and V5+ were used to replace and dope the Mg and P sites of LiMgPO4, respectively, to determine the optimal substitution components. By compounding Ba3(VO4)2 with the optimal ion substitution component, the resonance frequency temperature coefficient was adjusted to near zero, while the sintering temperature of the ceramic was reduced. The cold sintering process was used to prepare LiMgPO4 ceramics, and the effects of different uniaxial pressures, sintering temperatures, and insulation times on the structure and properties of the cold-sintered LiMgPO4 ceramics were systematically studied to determine the optimal cold sintering process parameters. Finally, the optimal process parameters were used to composite sinter polytetrafluoroethylene (PTFE) with LiMgPO4 ceramics through cold sintering, further optimizing the structure and properties of the ceramics.

A study was conducted to investigate the effects of different raw materials on the properties of LiMgPO4 ceramics. It was found that the use of magnesium carbonate as a raw material can effectively reduce the sintering temperature of the ceramics. LiMgPO4 ceramics with high crystallinity, uniform grain growth, and relative density ρr of 93.5% could be prepared at a sintering temperature of 950oC. By substituting Cu2+ and V5+ for Mg and P positions in LiMgPO4, respectively, it was found that the ceramics exhibited optimal performance at different sintering temperatures and substitution levels. Specifically, when the substitution level of Cu2+ was x=0.04 mol, the ceramics exhibited the best performance at a sintering temperature of 900oC, with ρr = 95.49%, εr = 7.06, and tanδ = 2.34×10-3. When the substitution level of V5+ was x=0.02 mol, the ceramics exhibited the best performance at a sintering temperature of 950oC, with ρr = 96.37%, εr = 6.82, and tanδ = 1.58×10-3.

The XRD results of LiMgPO4 and LiMg(P0.98V0.02)O4 were structurally refined to obtain the atomic occupancy and crystal structure parameters of the two phases under the experimental conditions. Based on this, first-principles calculations were performed for both compounds. The results show that the substitution of V for P increases the lattice parameter, reduces the bandgap width, and increases the elastic modulus, which is beneficial for improving the structural stability and toughness of the ceramic. Additionally, it leads to a decrease in the dielectric constant of the ceramic and a resonance frequency temperature coefficient that approaches zero.

The (1-x)LiMg(P0.98V0.02)O4-xBa3(VO4)2 composite ceramics were prepared by co-sintering LiMg(P0.98V0.02)O4 and Ba3(VO4)2 additives. The results show that the addition of Ba3(VO4)2 significantly reduces the sintering temperature and increases the density of the ceramics. The grain growth of each component is relatively uniform, and as the content of Ba3(VO4)2 increases, the size of the grains in the composite ceramics gradually decreases, while the dielectric constant (εr) gradually increases, and the Q×f value gradually decreases, and the τf value tends towards a positive value. When the amount of Ba3(VO4)2 added is x=0.5, the composite ceramic obtained a near zero τf value under the condition of 850°C for 2 hours. The microwave dielectric properties reached their optimal values: εr=9.26, Q×f=25412 GHz, and τf=-1.53 ppm/°C.

The cold sintering process of LiMgPO4 (LMP) was studied, and it was found that within a certain range, increasing uniaxial pressure and sintering temperature both contribute to the densification of ceramics. Suitable holding time can promote complete particle growth, while overly long holding time can hinder the densification process. Under the conditions of 600MPa uniaxial pressure, 200°C sintering temperature, and 30min holding time, the comprehensive performance of LMP obtained by cold sintering reached its optimum: relative density ρr = 93.1%, dielectric constant εr = 5.12, and dielectric loss tangent tanδ = 6.87×10-3. To further optimize the dielectric performance of LMP, a (1-x)LMP-xPTFE organic-inorganic composite ceramic was prepared with polytetrafluoroethylene (PTFE) as a cold sintering intermediate solvent and ceramic modifier. It was found that under the conditions of 600 MPa uniaxial pressure, 200°C sintering temperature, and 30 min holding time, with the increase of PTFE mass fraction, the Q×f value of the ceramic gradually increased. When x=0.4, the microwave dielectric performance of (1-x)LMP-xPTFE reached its best, with εr = 2.80, Q×f = 9711 GHz, and τf =-39.84 ppm/°C.

参考文献:

[1] 吕笑松. 新型铌钽酸盐系中介微波介质陶瓷研究[D]. 天津: 天津大学, 2017.

[2] 程鹏, 郑勇, 董作为, 等. 微波介质陶瓷制备技术研究进展[J]. 材料导报, 2014, 28(1): 110-114.

[3] Peng S, Zhang Y, Yi T. Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review[J].Materials. 2023, 16(1): 423.

[4] 黄新杰. ZnO-Al2O3-SiO2基微波介质陶瓷的制备及圆极化微带天线的设计[D]. 广州: 华南理工大学, 2019.

[5] Wu P , Yang H , Gui L ,et al.Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant[J].Ceramics International, 2022, 48(12):17289-17297.

[6] 岑远清, 杜泽伟, 陈梓贤, 等. LTCC低介电常数微波介质陶瓷的研究进展[J]. 电子元件与材料, 2010, 29(12): 64-67.

[7] 杨邦朝, 胡永达. LTCC技术的现状和发展[J]. 电子元件与材料, 2014, 33(11): 5-9.

[8] Zhan Y , Li L , Du M .The simulation for a high-efficiency millimeter wave microstrip antenna by low dielectric loss and wide temperature stable lithium-based microwave dielectric ceramics for LTCC applications[J].Ceramics International, 2021, 47(19): 27462-27468.

[9] Reaney I M, Iddles D. Microwave dielectric ceramics for resonator and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 2006, 89: 2063-2072.

[10] Ohsato H. Functional advances of microwave dielectrics for next generatian[J]. Ceramics International, 2012, 38(supp-S1): S141-S146.

[11] 刘晓开. 温度稳定型固溶体微波介质陶瓷的制备与性能研究[D]. 合肥: 合肥工业大学, 2021.

[12] 武山萧. 新型磷基微波介质陶瓷结构与性能的研究[D]. 天津: 天津大学, 2018.

[13] Du Q B, Wen Q Z, Jiang L X, et al. A novel low-temperature sintering microwave dielectric ceramic Li4SrCaSi2O8 with low-εr and low loss[J]. Ceramics International, 2023, 49(13): 22617-22622.

[14] 程鹏. LiMgPO4基低介电常数微波介质陶瓷的制备及性能研究[D]. 南京: 南京航空航天大学, 2014.

[15] Freer R, Azough F. Microstructural engineering of microwave dielectric ceramics[J]. Journal of the European Ceramic Society, 2008, 28(7): 1433-1441.

[16] Huang F Y, Su H, Zhang Q, et al. Crystal structure and performance modification of a novel triclinic CaMgP2O7 microwave dielectric ceramic with low sintering temperature[J]. Journal of the European Ceramic Society, 2023, 43(8): 3338-3343.

[17] Jiang D H, Chen J J, Lu B B, et al. Preparation, crystallization kinetics and microwave dielectric properties of CaO-ZnO-B2O3-P2O5-TiO2 glass-ceramics[J]. Ceramics International, 2019, 45(7): 8233-8237.

[18] Phadtare V D, Parale V G, Kulkarni G K, et al. Microwave dielectric properties of barium substituted screen printed CaBi2Nb2O9 ceramic thick films[J]. Ceramics International, 2018, 44(7): 7515-7523.

[19] Guo Y, Ohsato H, Kakimoto K. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency [J]. Journal of the European Ceramic Society, 2006, 26(10-11): 1827-1830.

[20] Ohasto H, Tsunooka T, Ando M, et al. Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant [J]. Journal of the Korean Ceramic Society, 2003, 40(4): 350-353.

[21] Ohsato H, Tsunooka T, Sugiyama T, et al. Forsterite ceramics for millimeterwave dielectrics [J]. Journal of Electro ceramics, 2006, 17(2-4): 445-450.

[22] Alford N M, Penn S J. Sintered alumina with low dielectric loss[J]. Journal of Applied Physics. 1996, 80(10): 5895-5898.

[23] Guo Y, Ohsato H, Kakimoto K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency[J]. Journal of the European Ceramic Society, 2006, 26(10-11): 1827-1830.

[24] Zhuang H, Yue Z X, Meng S Q, et al. Low-temperature sintering and microwave dielectric properties of Ba3(VO4)2-BaWO4 ceramic composites[J]. Journal of the American Ceramic Society, 2008, 91(11): 3738-3741.

[25] Yoon S H, Kim D W, Cho S Y, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 2006, 26(10-11): 2051-2054.

[26] Thomas D, Sebastian M T. Temperature-compensated LiMgPO4:a new glass-free low-temperature cofired ceramic[J]. Journal of the American Ceramic Society, 2010, 93(11): 3828-3831.

[27] Song K,Chen X,Fan X. Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics[J]. Journal of the American Ceramic Society, 2007, 90(6): 1808-1811.

[28] 赖元明. 低介低损耗LTCC微波介质材料及应用研究[D]. 成都: 电子科技大学, 2019.

[29] Ohishi Y, Miyauchi Y, Kakimoto K I, et al. Microwave dielectric properties of Al2O3-TiO2 improved by addition of ZnO [J]. Ferroelectrics, 2005, 327(1): 27-31.

[30] Umemura R, Ogawa H, Yokoi A, et al. Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic[J]. Journal of Alloys and Compounds, 2006, 424(1-2): 388-393.

[31] Thomas D, Sebastian M T. Temperature-compensated LiMgPO4: A new glass-free low-temperature cofired ceramic[J]. Journal of the American Ceramic Society, 2010, 93(11): 3828-3831.

[32] Thomas D, Sebastian M T. Effect of Zn2+ substitution on the microwave dielectric properties of LiMgPO4 and the development of a new temperature stable glass free LTCC [J]. Journal of the European Ceramic Society, 2012, 32(10): 2359-2364.

[33] Dong Z W, Zheng Y, Cheng P, et al. Microwave dielectric properties of Li(Mg1−xNix)PO4 ceramics for LTCC applications [J]. Ceramics International, 2014, 40(8): 12983-12988.

[34] Dong Z W, Zheng Y, Cheng P, et al. Preparation and microwave dielectric properties of Li(Mg1–xCox)PO4 ceramics for low-temperature cofired ceramic applications [J]. Ceramics International, 2014, 40(9): 14865-14869.

[35] Dong Z W, Zheng Y, Cheng P, et al. Microwav dielectric properties of low-temperature sinterable Ba3(VO4)2-LiMgPO4 composite ceramics [J]. Materials Letters, 2014, 131(15): 151-153.

[36] Wang, D W, Chen, J R, Wang, G, et al. Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications [J]. Journal of the American Ceramic Society, 2020, 102(10): 5934-5940.

[37] Kähäri H, Teirikangas M, Juuti J, et al. Dielectric properties of lithium molybdate ceramic fabricated at room temperature[J]. Journal of the American Ceramic Society, 2014, 97(11): 3378-3379.

[38] Guo J, Guo H Z, Baker A L, et al. Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie International Edition, 2016, 128(38): 11629-11633.

[39] Guo H Z, Baker A L, Guo J, et al. Cold sintering process: a novel technique for lowtemperature ceramic processing of ferroelectrics[J]. Journal of the American Ceramic Society, 2016, 99(11): 3489-3507.

[40] Guo J, Zhao X T, De T H, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Advanced Functional Materials, 2018, 28(39): 1-15.

[41] Guo J, Guo H Z, Baker A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie-International Edition, 2016, 55(38): 11457-11461.

[42] Gonzalez-Julian J, Neuhaus K, Bernemann M, et al. Unveiling the mechanisms of cold sintering of ZnO at 250 oC by varying applied stress and characterizing grain boundaries by kelvin probe force microscopy[J]. Acta Materials, 2018, 144: 116-128.

[43] Valentina M, Francesca S, Riccardo B, et al. Nano-to-macroporous TiO2 (anatase) by cold sintering process[J]. Journal of the European Ceramic Society, 2019, 39(7): 2453-2462.

[44] Funahashifu S, Guo J, Guo H, et al. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2): 546-553.

[45] Induja I, Sebastian M T. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process[J]. Journal of the European Ceramic Society, 2017, 37(5): 2143-2147.

[46] Baker A, Guo H, Guo J, et al. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication[J]. Journal of the American ceramic society, 2016, 99(10):3202-3204.

[47] Guo J, Guo H Z, Baker A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie-International Edition, 2016, 55(38): 11457-11461.

[48] Salvatore G, Mattia B, Luca Z, et al. A review of cold sintering processes[J]. Advances in Applied ceramics, 2020, 119(3): 115-143.

[49] Guo J, Berbano S S, Guo H Z, et al. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials[J]. Advanced Functional Materials, 2016, 26(39): 7115-7121.

[50] Zhao X T, Guo J, Wang K, et al. Introducing a ZnO-PTFE (polymer) nanocomposite varistorvia the cold sintering process[J]. Advanced Engineering Materials, 2018, 20(7): 1700902.

[51] Sada T, Tsuji K, Ndayishimiye A, et al. High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2·8H2O[J]. Journal of the European Ceramic Society, 2021, 41(1): 409-417.

[52] 江婵. 低介电常数微波陶瓷材料的制备、介电性能及机理研究[D]. 广州: 华南理工大学, 2012.

[53] 尹雪帆, 喻佑华, 周川钧. 微波介质陶瓷材料发展综述[J]. 中国陶瓷, 2006, 42(4): 3-7.

[54] 胡杰, 吕学鹏, 张天宇, 等. 低介电常数微波介质陶瓷研究进展[J]. 材料导报, 2017, 31(S2): 107-111+114.

[55] Sheen J. Study of microwave dielectric properties measurements by various resonance techniques[J]. .Measurement, 2005, 37(2):123-130.

[56] 沈杰. Ca基复合钙钛矿微波介质陶瓷介电机理研究[D]. 武汉: 武汉理工大学, 2009.

[57] Yavetskiy R P, Balabanov A E, Parkhomenko S V. Effect of starting materials and sintering temperature on microstructure and optical properties of Y2O3:Yb3+ 5 at% transparent ceramics[J]. Journal of Advanced Ceramics, 2020, 10: 49-61.

[58] Tseng C F. Microwave dielectric properties of a new Cu0.5Ti0.5NbO4 ceramics[J]. Journal of the European Ceramic Society, 2015, 35: 383-387.

[59] 谭可, 宋涛, 沈涛, 于宏林, 张永翠, 崔凯, 徐先豹, 李魏, 王浩然. 低介电常数微波介质陶瓷的研究进展[J]. 现代技术陶瓷, 2022, 43(01): 11-29.

[60] 邓锐. (Mg0.95Mn0.05)2TiO4基微波介质陶瓷的制备及其改性研究[D]. 景德镇: 景德镇陶瓷大学, 2021.

[61] 朱文嘉. Rietveld法的理论分析及其在相分析中的应用[D]. 湘潭: 湘潭大学, 2017.

[62] Yang H Y, Chai L, Xu C Z, et al. Structure, infrared spectrum, and microwave dielectric properties of NiO-TiO2-Nb2O5 ceramics[J]. Solid State Communications, 2023, 368: 115183.

[63] Zhou T, Du J Y, Wang C, et al. Chemical doping of the SnSe monolayer: a first-principle calculation[J]. Physical Chemistry Chemical Physics, 2019, 21: 14629-14637.

[64] 吴丽丹. 掺镱、铥的钼酸盐晶体生长, 性能及XRD-Rietveld结构精修[D]. 广州: 暨南大学, 2016.

[65] 吴丽丹, 刘广锦, 李真, 等. Nd3+:NaGd(MoO4)2晶体的生长及XRD-Rietveld结构精修[J]. 人工晶体学报, 2016, 45(03): 569-573+579.

[66] 薛飞, 李旺, 唐鹿等. 钇掺杂BiFeO3多铁陶瓷的Rietveld结构精修及其物理特性[J]. 中国陶瓷, 2017,53(03): 19-23.

[67] 刘明光, 郭虎森. NH4ZnPO4晶体结构Rietveld法精修[J]. 现代仪器, 2003(03): 23-24.

[68] 包立夫. 浅谈晶体结构分析技术-中子衍射与Rietveld结构精修方法[J]. 甘肃科技, 2016, 32(06): 11-13.

[69] 潘顺康, 周怀营, 邹伟, 等. 三元系Ce-Al-Cu中化合物晶体结构的Rietveld法计算机程序修正[J]. 中国稀土学报, 2010, 28(04): 478-483.

[70] Zhang Y F, Liu P P, Zhu X L, Liu L. A reversible hydrogen storage material of Li-decorated two-dimensional (2D) C4N monolayer: First principles calculations[J]. International Journal of Hydrogen Energy, 2021, 46(65): 32936-32948.

[71] 田晶鑫. BiFeO3基陶瓷的结构调控和电学行为及第一性原理计算[D]. 哈尔滨: 哈尔滨工业大学, 2020.

[72] 丁超, 李卫, 刘菊燕, 等. Sb, S共掺杂SnO2电子结构的第一性原理分析[J]. 物理学报, 2018, 67(21): 141-147.

[73] 袁焕丽, 袁保合, 李芳, 等. ZrV(2-x)PxO7固溶体的相变与热膨胀性质的研究[J]. 物理学报, 2012, 61(22): 7-12.

[74] Wang C. Microstructure, Mechanical Properties and First Principles Calculations of Mo/VC Multilayers[J]. Coatings, 2023, 13(1): 127-127.

[75] 高洁. 纤锌矿型MgxZn1-xO的第一性原理研究[D]. 呼和浩特: 内蒙古大学, 2014.

[76] 李素. 电化学法制备镁盐晶须及第一性原理研究[D]. 太原: 太原理工大学, 2011.

[77] Cappellini G, Sophie B R, Bernard A, et al. Structural properties and quasiparticle energies of cubic SrO, MgO and SrTiO3 [J]. Journal of Physics: Condensed Matter, 2000, 12: 3697-3688.

[78] Tang W J, Li D C, Zhao S Z, et al. First principle of the elastic property of GaAs saturable absorbers [J]. Infrared and Laser Engineering, 2011, 40: 1881-1885.

[79] 史武军. 掺杂对钛酸锶光催化性质影响的第一性原理研究[D]. 南京: 南京大学, 2013.

[80] 宋开新. 低介电常数微波介质陶瓷[D]. 杭州: 浙江大学, 2007.

[81] Zhuang H, Yue Z X, Meng S Q, et al. Low-temperature sintering and microwave dielectric properties of Ba3(VO4)2-BaWO4 ceramic composites[J]. Journal of the American Ceramic Society, 2008, 91(11): 3738-3741.

[82] 陈康. 非化学计量比LiMgPO4基微波介质陶瓷介电性能的研究[D]. 南京: 南京航空航天大学, 2018.

[83] 程子凡. 低介电常数聚阴离子型微波电介质陶瓷的研究[D]. 广州: 华南理工大学, 2016.

[84] 叶龙, 金霞, 王筱珍, 等. Pb掺杂BaO-Nd2O3-TiO2系微波介质陶瓷及其低频测量方法的研究[J].功能材料, 1998(01): 75-78.

[85] Kim E S, Chun BS, Freer R, et al. Effects of packing fraction and bond valance on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics[J]. Journal of the European Ceramic Society, 2010, 30: 1731-1736.

[86] Wang D W, Li L H, Jiang J, et al. Cold sintering of microwave dielectric ceramics and devices[J]. Journal of Materials Research, 2021, 36: 333-349.

[87] Wang D, Chen J, Wang G, Lu Z, Sun S, Li J, Jiang J, Zhou D, Song K, Reaney I.M. Cold sintered LiMgPO4 based composites for low temperature co-fred ceramic (LTCC) applications[J]. Journal of the European Ceramic Society, 2020, 103: 6237-6244.

[88] Guo J, Guo H Z, Heidary D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: PSS composites[J]. Journal of the European Ceramic Society, 2017, 37(4): 1529-1534.

[89] Sada T, Tsuji K, Ndayishimiye A, et al. Enhanced high permittivity BaTiO3-polymer nanocomposites from the cold sintering process[J]. Journal of Applied Physics, 2020, 128(8): 084103.

[90] Seo J H , Jing G , Guo H , et al. Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity[J]. Ceramics International, 2017, 43(17): 15370-15374.

[91] Tseng C F. Microwave dielectric properties of a new Cu0.5Ti0.5NbO4 ceramics[J]. Journal of the European Ceramic Society, 2015, 35: 383-387

中图分类号:

 TQ174    

开放日期:

 2027-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式