- 无标题文档
查看论文信息

论文中文题名:

 煤岩体突水通道骨料截流沉积运移规律研究    

姓名:

 刘锋    

学号:

 19204053030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 煤矿水害防治    

第一导师姓名:

 苏培莉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-13    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Research on the Deposition and Migration Law in Water Inrush Channel of Coal    

论文中文关键词:

 煤岩体 ; 突水通道 ; 阻水骨料 ; 沉积运移 ; 降速截流 ; CFD-DEM耦合    

论文外文关键词:

 Coal rock ; Water inrush channel ; Aggregate ; Deposition and migration ; Deceleration and cut-flow ; CFD-DEM coupling    

论文中文摘要:

       矿井、隧道等地下工程建设过程中经常需要穿越富水地带,严重影响工程安全施工及日后的安全运营。突水事故发生后,采用钻孔注浆的方法能在短时间内对其进行有效治理,帮助企业尽早恢复正常生产。注浆封堵突水时所采用的工艺一般为先灌注骨料建立阻水墙降低流速、减小过水断面后再进行注浆加固封堵,开展骨料沉积运移规律研究对于快速建造阻水墙、短时间治理突水具有重要意义。本文通过理论分析、室内试验及数值模拟相结合的方式,对小流量、高流速煤岩体突水通道骨料降速截流控制机理及运移规律进行了深入研究。主要研究内容和成果如下:

(1) 基于浆体管道输送及泥沙运动力学,建立突水通道截流过程中骨料的沉积运移模型。根据骨料在过水通道沉积时的受力特点,结合动能定理及力学平衡方程进行理论推导,建立骨料沉积运移模型,模型考虑了骨料粒径、通道宽度、灌注高度等因素对骨料扩散距离影响,推导出通道封堵即将接顶时骨料起动计算公式,为突水通道骨料封堵提供理论指导。

(2) 骨料降速截流模拟试验平台的设计。试验平台由供水系统、管道系统、骨料灌注系统、数据及图像采集系统、骨料回收系统等5部分组成,借助该平台可模拟开展不同动水流速、灌注材料、通道宽度、灌注高度等多因素影响下的截流封堵试验,并实时采集骨料堆积、扩散形态图像、通道压力数据等。

(3) 骨料降速截流封堵模拟试验。通过正交试验方法,揭示了动水流速、骨料粒径、灌注高度等因素对骨料堵水率的影响及其主次关系;开展骨料灌注过程中通道压力变化规律研究;开展无水及静水条件下骨料休止角研究,将研究结论与正交试验结果对比分析,明确了封堵过程骨料堆积形态与休止角间关系;建立了不同动水流速下骨料粒径的选配标准;确定了不同工况下骨料灌注孔的最优间距;采用全面试验法,研究并探讨了骨料不同灌注顺序对堵水效果的影响。

(4) 采用CFD-DEM耦合的方法开展骨料降速截流模拟试验。首先建立颗粒和管道的几何模型,并在软件中进行参数设置,然后模拟开展了不同条件下骨料封堵突水试验,最后将仿真结果与试验结果进行对比分析,分析结果进一步补充并完善了室内试验结论。

论文外文摘要:

       The construction of mines or tunnels and other underground projects is often necessary to traverse the water-rich areas, which seriously affects the safe construction and future operation of the project. Using the borehole grouting method can be effectively managed water breakthroughs in a short time and help the enterprise to resume normal production as soon as possible. The process of grouting to block water inrush is generally filling the aggregate to build a water barrier wall, firstly, to reduce the flow rate and the area of flowing cross-section before grouting and reinforcing. Therefore, it is necessary to study the law of aggregate deposition and migration, which can help workers rapidly construct water blocking. In this paper, a combination of theoretical analysis, laboratory experiments, and numerical simulation are used to conduct an in-depth study in the experiment of aggregate interception control in the small flow and high-velocity rates of the water inrush channel of coal. The main research contents and achievements are as follows:

(1) Based on slurry pipeline transportation and sediment mechanics, a model for the deposition and migration of aggregates during the interception process of the water inrush channel is established. According to the force characteristics of the aggregate deposition in the water inrush channel, combined with the kinetic energy theorem and the mechanical equilibrium equation for theoretical derivation, to establish the aggregate deposition and migration model, the model takes into account the aggregate’s diameter, channel width, perfusion height, and other factors in the influence of the aggregate diffusion distance, the calculation formula of aggregate’s start-up when the water inrush channel is blocked and about to reach the top is deduced, which provides theoretical guidance for the water inrush channel aggregate plugging.

(2) Design of a simulation experiment platform for aggregate deceleration and cut-flow. The experiment platform is composed of five parts: water-supply system, piping system, aggregate perfusion system, data and image acquisition system, and aggregate recovery system. The platform can simulate flow interception and blocking experiments under the influence of different dynamic water flow rates, perfusion material, channel width, and perfusion height, and collect real-time images of aggregate accumulation, diffusion patterns, channel pressure data, etc.

(3) Simulation experiment of aggregate deceleration and cut-flow. Through the orthogonal experiment method, revealing the influence of dynamic water flow rate, aggregate particle size, perfusion height, and other factors on the water sealing effect of the aggregate and its primary and secondary relationships; expanding the study of channel pressure change during aggregate infusion; study on the repose angle of aggregate under anhydrous and hydrostatic conditions, by comparing and analyzing with the results of orthogonal experiments to clarify the relationship between the aggregate accumulation form and repose angle during the plugging process; established criteria for the selection of aggregate particle size for different dynamic water flow rates; the optimum spacing of the aggregate perfusion holes under different working conditions was determined; the influence of different perfusion sequences of aggregates on the sealing effect was investigated by the comprehensive test method.

(4) CFD-DEM coupling method was used to carry out the simulation experiment of aggregate deceleration and cut-flow inrush water. Firstly, the geometric models of particles and pipes were established, and parameter settings were made in the software, then the experiment of simulating aggregate sealing water inrush channel under different conditions was carried out, finally, the simulation results were compared and analyzed with the laboratory experiment results, and the analysis results further reasonably supplemented and improved the laboratory experiment conclusions.

参考文献:

[1] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005(16):2803-2813.

[2] 钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10): 1945-1956.

[3] 武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(05):795-805.

[4] 李利平,成帅,张延欢,等.地下工程安全建设面临的机遇与挑战[J].山东科技大学学报(自然科学版),2020,39(04):1-13.

[5] Shucai Li, Rentai Liu, Qingsong Zhang, et, al. Protection against water or mud inrush in tunnels by grouting: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(05):753-766.

[6] 张顶立.隧道及地下工程的基本问题及其研究进展[J].力学学报,2017,49(01):3-21.

[7] 李术才,许振浩,黄鑫,等.隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J].岩石力学与工程学报, 2018,338(05):6-34.

[8] 洪开荣.近2年我国隧道及地下工程发展与思考(2017-2018年)[J].隧道建设(中英文),2019,39(05):710-723.

[9] 张培森,李复兴,朱慧聪,等.2008—2020年煤矿事故统计分析及防范对策[J].矿业安全与环保,2022,49(01):128-134.

[10]孟远,谢东海,苏波,等.2010年—2019年全国煤矿生产安全事故统计与现状分析[J].矿业工程研究,2020,35(04):27-33.

[11]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001(06):839-841.

[12]罗平平,何山,张玮,等.岩体注浆理论研究现状及展望[J].山东科技大学学报(自然科学版),2005,24(01):46-48.

[13]王晓蕾,秦启荣,苏培东,等.破碎围岩注浆加固技术研究现状及发展趋势[J].科学技术与工程,2017,17(23):122-131.

[14]Fei Xiao, Qian Liu, Zhiye Zhao. Information and knowledge behind data from underground rock grouting[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021, 13(06):1326-1339.

[15]胥洪彬.岩溶管道型涌水水力特征及注浆封堵机理研究[D].济南:山东大学,2019.

[16]Haiyan Li, Yuchuan Zhang, Jing Wu, et al. Grouting sealing mechanism of water gushing in karst pipelines and engineering application[J]. Construction and Building Materials,2020,254(C).

[17]Peili Su, Feng Liu, Peng Yao, et al. Research on Optimal Proportion and Performance of Cement-Clay Slurry[J]. Advances in Civil Engineering,2021,2021.

[18]乔军,王铁记,王君现.工业废铁链在煤矿特大动水条件下溃水灾害的应用[J].中国煤田地质,2006,18(04):47-48.

[19]高志刚.地面注浆堵水充填骨料工艺技术[J].煤矿开采,2005(04):78-79+82.

[20]蒋勤明.集中突(过)水巷道阻水墙综合建造技术[J].煤矿安全,2009,40(05):37-39.

[21]赵庆彪,蒋勤明,高春芳.邯邢矿区深部煤层底板突水机理研究[J].煤炭科学技术,2016,44(03):117-121+176.

[22]张党育,蒋勤明,高春芳,等.华北型煤田底板岩溶水害区域治理关键技术研究进展[J].煤炭科学技术,2020,48(06):31-36.

[23]李海燕.大流量岩溶管道涌水封堵机理与方法研究[D].济南:山东大学,2018.

[24]唐鹏越.基于管道—裂隙型岩溶水径排系统特征的注浆封堵技术研究[D].济南:山东大学,2018.

[25]李彩惠.动水条件下大流量突水巷道骨料灌注技术[J].华北科技学院学报, 2009,6(04):106-107,116.

[26]李彩惠.矿井特大突水巷道截流封堵技术[J].西安科技大学学报,2010,30(03):305-308.

[27]李彩惠.带压开采防治水技术及研究方向[J].煤矿开采,2010,15(01):47-49+108.

[28]Qiucheng Zhang, Jinhai Li, Bingshen Liu, et al. Directional Drainage Grouting Technology of Coal Mine Water Damage Treatment. 2011, 26:264-270.

[29]姬中奎.矿井大流量动水注浆细骨料截流技术[J].煤炭工程,2014,46(07):43-45.

[30]柴辉婵,李文平,郑士田,等.垮塌煤巷内快速构建阻水墙技术[J].煤矿安全, 2015,46(06):66-68.

[31]王宇航,张结如,石志远,等.地面定向钻孔在治理煤层底板断层带突水中的应用[J].能源与环保,2017,39(03):77-81,89.

[32]潘东懿.快速封堵巷道顶板高压大流量集中涌水的井下骨料添加工艺[J].中国煤炭地质,2017,29(07):52-54.

[33]杨志斌,董书宁.动水大通道突水灾害治理关键技术[J].煤炭科学技术,2018,46(04):110-116.

[34]惠爽.矿井淹没巷道多孔灌注骨料封堵模拟试验[D].徐州:中国矿业大学,2018.

[35]李红伟,刘功杰,李晓亮.高速、大流量岩溶管道骨料综合添加技术的应用[J].山东煤炭科技,2019,(08):184-185.

[36]牟林.过水巷道中骨料起动力学机制及两相流耦合模拟[J].煤田地质与勘探, 2020,48(06):161-169.

[37]牟林,董书宁,郑士田,等.基于CFD-DEM耦合模型的阻水墙建造过程数值模拟[J].岩土工程学报,2021,43(03):481-491.

[38]牟林.突水矿井动水巷道骨料灌注截流可视化平台研制与试验研究[J].煤田地质与勘探,2021,49(05):156-166.

[39]牟林.过水大断面截流堵巷工程若干关键技术问题的探讨[J].煤炭学报, 2021,46(11):3525-3535.

[40]牟林.动水条件巷道截流阻水墙建造机制与关键技术研究[D].北京:煤炭科学研究总院,2021.

[41]王兴奎,邵学军,王光谦,吴保生等编著.河流动力学[M].北京:科学出版社.2004.

[42]张瑞瑾,谢鉴衡,陈文彪编著.河流动力学[M].武汉:武汉大学出版社.2007.

[43]张小峰.从水力学经验公式看泥沙运动基本理论的发展[J].泥沙研究,2018,43(05):73-80.

[44]隋冰,刘刚,李博,等.颗粒在起伏成品油管道中的沉积运移规律[J].石油学报,2016,37(04):523-530.

[45]段自豪.非恒定流作用下的泥沙起动与输移机理实验研究[D].长沙:长沙理工大学,2017.

[46]黄哲,白玉川.渗流作用下的泥沙运动研究综述[J].泥沙研究,2017,42(06):73-80.

[47]李明.往复流作用下粗颗粒推移质泥沙运动的研究[D].上海:上海交通大学,2018.

[48]于洋.明渠弯道水流泥沙运动的三维数值模拟研究[D].大连:大连理工大学,2018.

[49]李婉艺.微小颗粒在裂隙通道中运移沉积特性的数值研究[D].天津:天津大学,2018.

[50]李东泽.成品油管内颗粒团一维运移模型的建立及验证[D].青岛:中国石油大学,2019.

[51]费翔俊.浆体与粒状物料输送水力学[M].清华大学出版社.1994.

[52]Druand, R. The hydraulic transportation of coal and solid materials in pipes[M]. Colloq of National Coal Board London, 1952, 39-52.

[53]瓦斯普编著.固体物料浆体管道输送[M].北京:北京水利出版社.1980.

[54]Graf W H, Robinson M, Yucel O. The critical deposit velocity for solid-liquid mixtures[C]//Hydrotransport. 1970, 1: 77-88.

[55]R. Salazar-Mendoza, G. Espinosa-Paredes. A Three-Region Hydraulic Model for Solid-Liquid Flow with a Stationary Bed in Horizontal Wellbores[J]. Petroleum Science and Technology,2009,27(10).

[56]V.Matousek. Liquid-Solid Flows Above Deposit in Pipe: Prediction of Hydraulic Gradient and Deposit Thickness[C].ASME. Proc of 2009 Fluids Engineering Division Summer Meeting,Vail:ASME,2009:579-584.

[57]Kaushal D R, Kimihiko Sato, Takeshi Toyota, et al. Effect of Particle Size Distribution on Pressure Drop and Concentration Profile in Pipeline Flow of Highly Concentrated Slurry[J]. International Journal of Multiphase Flow,2005,31(07):809-823.

[58]Turian R M, Yuan T F, Mauri G. Pressure drop correlation for pipeline flow of solid-liquid suspensions[J]. Aiche Journal, 1971, 17(17):809-817.

[59]许振良.管道内非均质流速度分布于水利坡度的研究[J].煤炭学报,1998,23(01):91-96.

[60]Salah Zouaoui, Hassane Djebouri, Kamal Mohammedi, et al. Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe[J]. Chinese Journal of Chemical Engineering,2016,24(02):317-322.

[61]Corredor F E R, Bizhani M, Kuru E. Experimental investigation of cuttings bed erosion in horizontal wells using water and drag reducing fluids[J]. Journal of Petroleum Science & Engineering, 2016, 147:129-142.

[62]杨超,郭利杰,张林,等.铜尾矿流变特性与管道输送阻力计算[J].工程科学学报, 2017,39(05):663-668.

[63]赵利安,马斌,王铁力.粗颗粒尾矿浆体管道输送速度分布规律研究[J].硅酸盐通报,2017,36(07):2492-2498.

[64]张士林.长距离输送浆体管道最大敷设角度的试验研究[J].泥沙研究,2018,43(04):62-66.

[65]朱光轩,张庆松,冯啸,等.基于颗粒吸附概率模型的渗透注浆滤过机制研究[J].工程科学与技术,2020,52(05):125-135.

[66]冯啸,夏冲,王凤刚,等.砂土介质中颗粒浆液扩散距离变化规律[J].山东大学学报(工学版),2020,50(05):20-25.

[67]李术才,冯啸,刘人太,等.砂土介质中颗粒浆液的渗滤系数及加固机制研究[J].岩石力学与工程学报,2017,36(S2):4220-4228.

[68]《岩土注浆理论与工程实例》协作组编著.岩土注浆理论与工程实例[M].北京:科学出版社.2001.

[69]Gailing Zhang. An experimental investigation on the permeability of chemically grouted sands and its application for mitigating underground sand and water inrushes[J]. Int. J. of Environment and Pollution,2016,59(2/3/4).

[70]刘洁.岩溶管道动水注浆封堵机理试验研究及工程应用[D].济南:山东大学,2020.

[71]张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学,2011.

[72]张连震,张庆松,张霄,等.动水条件下渗透注浆扩散机理研究[J].现代隧道技术,2017,54(01):74-82.

[73]俞文生,李鹏,张霄,等.可变倾角单裂隙动水注浆模型试验研究[J].岩土力学,2014,35(08):2137-2143+2149.

[74]Mohammed M H, Pusch R, Knutsson S. Study of cement-grout penetration into fractures under static and oscillatory conditions[J]. Tunnelling and Underground Space Technology, 2015,45:10–19.

[75]Qiong Wang, Shanyong Wang, Scott William Sloan, et al. Experimental investigation of pressure grouting in sand[J]. Soils and Foundations,2016,56(2).

[76]Quansheng Liu, Lei Sun. Simulation of coupled hydro-mechanical interactions during grouting process in fractured media based on the combined finite-discrete element method[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2019,84.

[77]刘人太,张连震,张庆松,等.速凝浆液裂隙动水注浆扩散数值模拟与试验验证[J].岩石力学与工程学报,2017,36 (S1):3297-3306.

[78]Zhaofeng Li, Jian Zhang, Shucai Li, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials[J]. Journal of Cleaner Production,2020,245(C).

[79]Shucai Li, Chenyang Ma, Rentai Liu, et al. Super-absorbent swellable polymer as grouting material for treatment of karst water inrush[J].International Journal of Mining Science and Technology,2021,31(05):753-763.

[80]李金华,孙冠临,苏培莉,等.动水注浆沉积压力特征与注浆效果试验研究[J].矿业安全与环保,2017,44(06):21-24.

[81]谷拴成,孙冠临,苏培莉,等.岩体裂隙动水注浆扩散半径影响试验[J].煤田地质与勘探,2019,47(05):144-149.

[82]Liangchao Zou, Ulf Håkansson, Vladimir Cvetkovic. Yield-power-law fluid propagation in water-saturated fracture networks with application to rock grouting[J]. Tunnelling and Underground Space Technology,2020,95.

[83]Boschi Katia, di Prisco Claudio Giulio, et al. Micromechanical investigation of grouting in soils[J]. International Journal of Solids and Structures,2020,187(C).

[84]Krizek, R J. Chemical grouting in soils permeated by water[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(2):61.

[85]苏培莉,刘锋,贾毅飞,等.高水头条件下管道裂隙浆液封堵机制试验研究[J].科学技术与工程,2021,21(29):12513-12518.

[86]Peili Su, Yifei Jia, Feng Liu, et al. Cement Slurry Plugging Law and Optimal Plugging Flow Rate at a High Hydraulic Gradient[J]. Advances in Civil Engineering,2021,2021.

[87]郑卓,杨红鲁,高岩.动水作用下单一裂隙浆液扩散机理研究[J].应用基础与工程科学学报,2022,30(01):154-165.

[88]吴持恭,赵文谦,汝树勋等编著.水力学[M].北京:高等教育出版社.2016.

[89]胥洪彬.岩溶管道型涌水水力特征及注浆封堵机理研究[D].济南:山东大学,2019.

[90]钱宁,万兆惠著.泥沙运动力学[M].北京:科学出版社.1983.

[91]庞启秀.水流作用下块体受力试验研究[D].南京:河海大学,2005.

[92]曹斌.复杂条件下颗粒物料管道水力输送机理试验研究[D].北京:中央民族大学,2013.

[93]卢勇.管道固-液两相浆体输送理论研究[D].长沙:湖南大学,2015.

[94]匡翠萍,郑宇华,顾杰,等.泥沙颗粒团沉速[J].同济大学学报(自然科学版), 2016,44(12):1845-1850+1866.

[95]Jie Gu, Dan Qing Ma, Wei Chen, et al. Study on Settling Velocity of Sediment Particle Cloud in the Water[J]. Advanced Materials Research,2013,2115.

[96]陈立,宋涛,李东锋,等.侧向水流作用下均匀沙休止角变化的试验研究[J].泥沙研究, 2017,42(03):1-6.

[97]Wanghua Sui, Jinyuan Liu, Wei Hu, et al. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water[J]. Tunnelling and Underground Space Technology,2015,50(01):239-249.

中图分类号:

 TD745    

开放日期:

 2022-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式