- 无标题文档
查看论文信息

论文中文题名:

 浅埋综采面区段窄小煤柱破坏机理及顺槽围岩控制技术    

姓名:

 焦金照    

学号:

 21204228082    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 矿山岩体力学与支护    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-07    

论文外文题名:

 The failure mechanism of narrow and small coal pillars and the control technology of surrounding rock in shallow buried fully mechanized mining face section    

论文中文关键词:

 浅埋 ; 窄小煤柱 ; FLAC模拟 ; 支护设计 ; 水力压裂 ; 微震 ; 围岩控制    

论文外文关键词:

 shallow buried ; Narrow coal pillar ; FLAC simulation ; Support design ; Hydraulic fracturing ; Microseism ; Surrounding rock control    

论文中文摘要:

开展浅埋综采面区段窄小煤柱破坏机理及顺槽围岩控制技术的研究,对提高煤炭资源的回采率以及保证工作面的安全生产具有重要的工程价值。本文以陕煤集团神木红柳林煤矿15217综采面为工程背景,采用室内试验、理论分析、数值模拟及现场试验等方法开展研究工作,主要研究结论如下:

(1)完成了不同围压和不同卸荷速率下煤岩三轴压缩试验,试验结果表明:在一定围压范围内,随着围压的升高,煤岩峰值强度,主破裂角也随之增大。单轴压缩下,煤岩呈劈裂破坏形式,在三轴压缩条件下,随着围压的增大,煤样的破坏形式逐渐由局部剪切破坏向整体剪切破坏形式转变。声发射振铃计数显著增长主要发生在峰前弹塑性变形阶段和峰后破坏阶段;不同卸荷速率下煤岩三轴压缩试验破坏过程可以分为3个阶段:轴压加载阶段、围压卸载阶段和煤岩破坏阶段。卸荷作用下煤样破坏以拉剪混合破坏形式为主。随着卸荷速率的增加,煤岩内部裂隙发育速度越快,脆性破坏特征越明显,声发射瞬时振铃计数越高。

(2)完成了煤岩三轴压缩与三轴卸围压试验前后核磁共振试验,试验结果表明:三轴压缩和三轴卸围压试验后T2谱曲线均出现了明显右移的现象,且T2谱的第三波峰相对试验前显著增大,说明煤岩破坏后内部孔隙数量不断增加,孔隙尺寸不断增大。与三轴压缩试验相比,三轴卸围压试验后T2谱的第三波峰上升幅度更大,说明煤岩内部大孔径孔隙数量显著增多,卸围压试验煤岩破坏更剧烈,脆性破坏特征显著。试验后煤岩孔径尺寸主要分布在 之间。

(3)基于极限平衡理论,得出红柳林煤矿15217综采面合理的窄煤柱留设宽度应介于7.30m~8.80m之间。采用FLAC3D数值模拟方法,分析了双巷掘进和综采面回采期间不同煤柱宽度下煤柱的稳定性以及顺槽围岩应力、位移和塑性区分布特征。最终综合数值模拟和理论分析计算结果,得出8.5m是窄煤柱留设的最佳方案。

(4)基于“强支-强卸”结合设计理念,采用高强度托盘、高强度支护材料和高预应力锚杆(索)对顺槽围岩进行强力支护。根据极限平衡理论完成了15217综采面胶运顺槽和辅运顺槽支护参数设计,利用FLAC对支护参数合理性进行评价。结果表明:双巷掘进期间与综采面回采期间煤柱受力、变形均较小,顺槽围岩受力、变形、围岩塑性区和锚杆(索)受力均在安全许可范围内。

(5)基于“强支-强卸”结合设计理念,完成了15217综采面定向长钻孔分段水力压裂卸压方案设计及其现场卸压效果监测分析。综采面共布设四个钻场,每个钻场包含三个压裂钻孔,目标压裂层位为粉砂岩,压裂层位高度分别为18m、43m和62m。水力压裂卸压效果微震监测表明:水力压裂有效弱化了坚硬顶板的完整程度,压裂影响区内顶板基本可以随工作面推进及时垮落,减小了侧向支承压力对煤柱的影响,切断了其应力传递路径,从而优化了煤柱的受力环境。

(6)完成了15217综采面顺槽监测方案设计及现场实测工作。结果表明:15217综采面初次来压步距为47.4m,周期来压步距为17.5m,动载系数为1.27。15217综采面自2022年6月13日开始回采,2023年3月10日回采结束,工程实践表明:综采面回采期间顺槽围岩变形处于安全许可范围内,围岩未发生破坏,综采面安全回采,说明提出的支护与卸压方案合理有效。

论文外文摘要:

It is of great engineering value to improve the recovery rate of coal resources and ensure the safe production of working face by studying the failure mechanism of narrow and small coal pillars and the control technology of surrounding rock in shallow buried fully mechanized mining face. In this paper, the 15217 fully mechanized mining face of Shenmu Hongliulin Coal Mine of Shaanxi Coal Group is taken as the engineering background, and the research work is carried out by means of indoor test, theoretical analysis, numerical simulation and field test. The main conclusions are as follows :

(1) The triaxial compression test of coal rock under different confining pressures and different unloading rates was completed. The test results show that within a certain confining pressure range, with the increase of confining pressure, the peak strength of coal rock and the main fracture angle also increase. Under uniaxial compression, the coal rock is in the form of splitting failure. Under triaxial compression, with the increase of confining pressure, the failure mode of coal sample gradually changes from local shear failure to overall shear failure. The significant increase of acoustic emission ringing count mainly occurs in the pre-peak elastic-plastic deformation stage and post-peak failure stage. The failure process of coal-rock triaxial compression test under different unloading rates can be divided into three stages : axial compression loading stage, confining pressure unloading stage and coal-rock failure stage. Under the action of unloading, the failure of coal samples is mainly in the form of tensile-shear mixed failure. With the increase of unloading rate, the faster the development of cracks in coal rock, the more obvious the brittle failure characteristics, and the higher the instantaneous ringing count of acoustic emission.

(2) The nuclear magnetic resonance test of coal rock before and after triaxial compression and triaxial unloading confining pressure test was completed. The test results show that the T2 spectrum curve has obvious right shift after triaxial compression and triaxial unloading confining pressure test, and the third peak of T2 spectrum is significantly increased compared with that before the test, indicating that the number of internal pores of coal rock is increasing after failure, and the pore size is increasing. Compared with the triaxial compression test, the third peak of the T2 spectrum after the triaxial unloading confining pressure test rises by a larger margin, indicating that the number of large-diameter pores in the coal rock increases significantly, and the damage of the coal rock in the unloading confining pressure test is more severe and the brittle failure characteristics are significant. After the test, the pore size of coal rock is mainly distributed between .

(3) Based on the limit equilibrium theory, it is concluded that the reasonable width of narrow coal pillar should be between 7.30 m and 8.80 m. The numerical simulation method was used to analyze the stability of coal pillars and the distribution characteristics of stress, displacement and plastic zone of surrounding rock under different coal pillar widths during the excavation of double roadways and the mining of fully mechanized mining faces. Finally, based on the results of numerical simulation and theoretical analysis, it is concluded that when the width of section coal pillar is 8.5 m, it is the best scheme for narrow coal pillar retention.

(4) Based on the design concept of " strong support-strong unloading, " high-strength pallets, high-strength supporting materials and high-prestressed anchor rod and cable are used to strongly support the surrounding rock of the crossheading. According to the limit equilibrium theory, the support parameter design of glue transport crossheading and auxiliary transport crossheading in 15217 fully mechanized mining face was completed. FLAC is used to evaluate the rationality of support parameters. The results show that the stress and deformation of coal pillars during the excavation of double roadways and the mining of fully mechanized mining face are small, and the stress and deformation of surrounding rock, plastic zone of surrounding rock and anchor rod and cable are all within the allowable range of safety.

(5) Based on the design concept of ' strong support-strong unloading ', the pressure relief scheme design of directional long borehole staged hydraulic fracturing in 15217 fully mechanized mining face and its on-site pressure relief effect monitoring and analysis were completed. There are four drilling fields in the fully mechanized mining face. Each drilling field contains three fracturing boreholes. The target fracturing horizon is siltstone, and the fracturing horizon heights are 18 m, 43 m and 62 m respectively. The microseismic monitoring of the pressure relief effect of hydraulic fracturing shows that the hydraulic fracturing effectively weakens the integrity of the hard roof, and the roof in the fracturing affected area can basically fall in time with the advance of the working face, which reduces the influence of the lateral abutment pressure on the coal pillar and cuts off the stress transfer path, thus optimizing the stress environment of the coal pillar.

(6) The monitoring scheme design and field measurement of 15217 fully mechanized mining face are completed. The results show that the first weighting step distance of 15217 fully mechanized mining face is 47.4 m, the periodic weighting step distance is 17.5 m, and the dynamic load coefficient is 1.27. The mining of 15217 fully-mechanized mining face began on June 13,2022 and ended on March 10,2023. The engineering practice shows that the deformation of surrounding rock in the crossheading during the mining of fully-mechanized mining face is within the allowable range, and the surrounding rock is not damaged. The safe mining of fully-mechanized mining face shows that the proposed support and pressure relief scheme is reasonable and effective.

参考文献:

[1] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2] 唐珏, 王俊. “双碳”目标下煤炭发展及对策建议[J]. 中国矿业, 2023, 32(09): 22-31.

[3] 黄庆享. 浅埋煤层的矿压特征与浅埋煤层定义[J]. 岩石力学与工程学报, 2002, (08): 1174-1177.

[4] FRITH R, REED G. Limitations and potential design risks when applying empirically derived coal pillar strength equations to real-life mine stability problems[J]. International Journal of Mining Science and Technology, 2019, 29(1): 17-25.

[5] 韩承强, 张开智, 徐小兵, 等. 区段小煤柱破坏规律及合理尺寸研究[J]. 采矿与安全工程学报, 2007, (03): 370-3.

[6] 刘洋, 陆菜平, 王华, 等. 不规则煤柱变形破坏机理矩张量反演研究[J]. 采矿与安全工程学报, 2023, 40(06): 1201-1209.

[7] 王涛, 由爽, 裴峰, 等. 坚硬顶板条件下临空煤柱失稳机制与防治技术[J]. 采矿与安全工程学报, 2017, 34(01): 54-59+66.

[8] 黄万朋, 赵同阳, 江东海, 等. 双巷掘进留窄小煤柱布置方式及围岩稳定性控制技术[J]. 岩石力学与工程学报, 2023, 42(03): 617-629.

[9] Liu S F, Wan Z J, Zhang Y, et al. Research on evaluation and control technology of coal pillar stability based on the fracture digitization method[J]. Measurement, 2020, 158.

[10] 伍永平, 皇甫靖宇, 解盘石, 等. 基于大范围岩层控制技术的大倾角煤层区段煤柱失稳机理[J]. 煤炭学报, 2018, 43(11): 3062-3071.

[11] 邢闯闯, 王俊, 宁建国, 等. 动载扰动下深井护巷煤柱失稳破坏机理[J]. 煤炭科学技术, 2023, 51(03): 29-36.

[12] 孙利辉, 杨贤达, 张海洋, 等. 强动压松软煤层巷道煤帮变形破坏特征及锚注加固试验研究[J]. 采矿与安全工程学报, 2019, 36(02): 232-239.

[13] 何团, 毛德兵, 黄志增, 等. 特厚煤层区段防水煤柱稳定性评价及保护技术研究[J]. 岩土力学, 2017, 38(04): 1148-53.

[14] WU W D, BAI J B, WANG X Y, et al. Numerical Study of Failure Mechanisms and Control Techniques for a Gob-Side Yield Pillar in the Sijiazhuang Coal Mine China[J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1231-1245.

[15] 尹万蕾, 潘一山, 李忠华, 等. 基于煤岩流变特性的狭窄煤柱冲击地压孕育过程研究[J]. 防灾减灾工程学报, 2016, 36(05): 834-40.

[16] 张金贵, 程志恒, 陈昊熠, 等. 区段煤柱留设宽度分析及优化——以崖窑峁煤矿为例[J]. 煤炭科学技术, 2022, 50(10): 60-67.

[17] 郭强, 王萌. 动压影响下双巷布置工作面区段煤柱合理宽度研究[J]. 煤炭工程, 2021, 53(12): 97-102.

[18] 周朋, 张佳飞, 李各. 近距离煤层采空区下工作面煤柱留设宽度及巷道合理支护参数研究[J]. 煤炭工程, 2020, 52(S1):5-8.

[19] 刘金海, 姜福兴, 王乃国, 等. 深井特厚煤层综放工作面区段煤柱合理宽度研究[J]. 岩石力学与工程学报, 2012, 31(05): 921-927.

[20] 康红普, 张晓, 王东攀, 等. 无煤柱开采围岩控制技术及应用[J]. 煤炭学报, 2022, 47(01): 16-44.

[21] 王志强, 仲启尧, 王鹏, 等. 高应力软岩沿空掘巷煤柱宽度确定及围岩控制技术[J]. 煤炭科学技术, 2021, 49(12): 29-37.

[22] 田春阳, 常云博, 朱涛, 等. 6m大采高工作面沿空掘巷窄煤柱宽度及围岩控制技术研究[J]. 煤炭工程, 2021, 53(12): 39-44.

[23] 屠世浩, 白庆升, 屠洪盛. 浅埋煤层综采面护巷煤柱尺寸和布置方案优化[J]. 采矿与安全工程学报, 2011, 28(04): 505-510.

[24] 王红胜, 张东升, 李树刚, 等. 基于基本顶关键岩块B断裂线位置的窄煤柱合理宽度的确定[J]. 采矿与安全工程学报, 2014, 31(01): 10-16.

[25] 王红胜, 李树刚, 张新志, 等. 沿空巷道基本顶断裂结构影响窄煤柱稳定性分析[J]. 煤炭科学技术, 2014, 42(02): 19-22.

[26] 王康, 来兴平, 郭俊兵, 等. 坚硬顶板特厚煤层综放面区段煤柱合理宽度研究[J]. 煤炭工程, 2019, 51(05): 43-47.

[27] 王永, 朱川曲, 陈淼明, 等 . 窄煤柱沿空掘巷煤柱稳定核区理论研究[J]. 湖南科技大学学报, 2010, 25(04): 5-8.

[28] 朱若军, 郑希红, 徐乃忠. 深井沿空掘巷小煤柱合理宽度留设数值模拟研究[J]. 地下空间与工程学报, 2011, 7(02): 300-305+310.

[29] 王宏建. 布尔台煤矿掘进工作面过断层巷道支护技术研究[J]. 煤炭工程, 2023, 55(04): 71-76.

[30] 王巍, 张传宝. 千万吨矿井回采巷道锚杆支护技术优化[J]. 煤炭科学技术, 2022, 50(S1): 106-111.

[31] 焦建康. 切顶沿空留巷巷旁“刚-柔”联合支护技术研究[J]. 煤炭工程, 2023, 55(06): 45-49.

[32] 王俊峰. 中厚煤层留窄煤柱沿空掘巷支护技术研究[J]. 煤炭科学技术, 2020, 48(05): 50-56.

[33] 刘海东, 刘向忠, 刘伟冬. 顶板破碎围岩巷道“锚护喷注”一体化支护技术研究[J]. 煤炭工程, 2021, 53(10): 52-56.

[34] 杨鹏, 马平, 赵俊达. 高强度开采条件下煤炭巷道锚杆支护技术[J]. 煤炭工程, 2022, 54(S1): 44-48.

[35] 张峰, 刘学生, 段化超. 浅埋煤层软岩顶板巷道支护参数优化[J]. 煤矿安全, 2014, 45(04): 180-182+186.

[36] 陈长华, 崔强. 典型浅埋煤层回采巷道锚杆支护特性研究[J]. 煤炭科学技术, 2018, 46(S1): 12-17.

[37] SEEDSMAN R W. The spalling limit in tranaversely isotropic materisla the prediction of the maximum height of failure and the design of long-tendon roof support systems[J]. Mining Technology, 2018, 127(2): 65-74.

[38] ESTERHUIZEN G S, GEARHART D F, KIEMETTI T, et al. Analysis of gateroad stability at two longwall mines based on field monitoring results and numerical model analysis[J]. International Journal of Mining Science and Technology , 2019, 29(1): 35-43.

[39] CHENG X H . An improved method to calculate the loosening earth pressure on shallow tunnel[J]. Journal of the China Railway Society, 2014, 36(1): 100

[40] 张志勇, 张新国. 浅埋煤层软薄基岩巷道支护优化研究[J]. 矿业研究与开发, 2018, 38(08): 67-70.

[41] 吕坤, 李洪斌, 郭书英, 等. 浅埋煤层弱黏结顶板巷道支护对策研究[J]. 煤炭科学技术, 2016, 44(07): 158-163+195.

[42] 王建利. 浅埋薄基岩窄煤柱巷道上覆岩层破断规律与稳定控制研究[D]. 中国矿业大学, 2017.

[43] 邬雨泽. 浅埋煤层复合顶板无煤柱回采巷道支护技术研究[D]. 中国矿业大学, 2019.

[44] COGGAN J, GAO F, STEAD D, et al. Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability[J]. International Journal of Coal Geology, 2012, 90: 100-109.

[45] 吕帅, 刘建宇, 崔东亮, 等. 特厚煤层8.8 m超大采高综采面切眼放顶技术[J]. 煤炭工程, 2023, 55(S1): 65-69.

[46] 常博, 赵志鹏, 杨伟, 等. 特厚缓倾斜煤层坚硬厚顶板超长钻孔定向三维水力压裂技术及应用[J]. 中国矿业, 2023, 32(11): 160-167.

[47] 曹军, 赵明, 高龙. 布尔台煤矿坚硬顶板定向长钻孔水力压裂研究[J]. 中国煤炭, 2023, 49(S2): 164-170.

[48] 马冰, 蒋威. 厚硬顶板定向水力压裂分层垮落技术研究[J]. 煤炭技术, 2022, 41(04): 13-17.

[49] 郑玉斌, 秦飞龙. 水力致裂弱化坚硬顶板保护邻空巷道现场试验[J]. 煤矿安全, 2019, 50(05): 64-66.

[50] 杨俊哲, 郑凯歌. 厚煤层综放开采覆岩动力灾害原理及防治技术[J]. 采矿与安全工程学报, 2020, 37(04): 750-758.

[51] 杨俊哲, 吕清绪, 郑凯歌, 等. 浅埋特厚硬煤层过沟谷开采超前区域弱化控制技术[J]. 中国煤炭, 2021, 47(06): 13-20.

[52] 赵源, 曹树刚, 李勇, 等. 本煤层水压致裂增透范围分析[J]. 采矿与安全工程学报, 2015, 32(04): 644-650.

[53] Fan G, Zhang D, Zhang S, et al. Influence of Stress and Crack Patterns on the Sensitive Characteristics of Fissure Sandstone Permeability under Hydromechanical Coupling[J]. Applied Sciences, 2019, 9(4): 641.

[54] 冯彦军, 康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报, 2013, 32(S2): 3169-3179.

[55] 冯彦军, 陈金宇, 司林坡. 综放工作面水力预裂初次放顶技术及应用[J]. 煤炭技术, 2017, 36(03): 30-32.

[56] Zhao K, Stead D, Kang H, et al. Three-dimensional numerical investigation of the interaction between multiple hydraulic fractures in horizontal wells[J]. Engineering Fracture Mechanics, 2021, 246(2): 107620.

[57] Kresse O, Weng X. Numerical Modeling of 3D Hydraulic Fractures Interaction in Complex Naturally Fractured Formations[J]. ROCK MECHANICS AND ROCK ENGINEERING, 2018, 51(12): 3863-3881.

[58] Jung S G, Diaz M B, Kim K Y, et al. Fatigue Behavior of Granite Subjected to Cyclic Hydraulic Fracturing and Observations on Pressure for Fracture Growth[J]. Rock Mechanics and Rock Engineering, 2021, 54(10): 5207-5220.

[59] Qin Q, Xue Q, Ma Z, et al. Hydraulic Fracturing Simulations with Real-Time Evolution of Physical Parameters[J]. Energies, 2021, 14(6): 1678.

[60] Benouadah N, N Djabelkhir, X Song, et al. Simulation of Competition Between Transverse Notches Versus Axial Fractures in Open Hole Completion Hydraulic Fracturing[J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 3.

[61] Cheng Q, Huang B, Shao L, et al. Combination of Pre-Pulse and Constant Pumping Rate Hydraulic Fracturing for Weakening Hard Coal and Rock Mass[J]. Energies, 2020, 13(21): 5534.

[62] 刘向忠. 水力压裂控制坚硬顶板技术在东曲矿的应用研究[J]. 煤炭技术, 2021, 40(05): 28-30.

[63] 于永军, 朱万成, 李连崇, 等. 水力压裂裂缝相互干扰应力阴影效应理论分析[J]. 岩石力学与工程学报, 2017, 36(12): 2926-2939.

[64] 吴亚军, 王亚军, 杨树新, 等. 特厚煤层小煤柱临空巷道矿压显现及控制技术研究[J]. 煤炭技术, 2021, 40(06): 33-37.

中图分类号:

 TD353    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式