- 无标题文档
查看论文信息

论文中文题名:

 电沉积多孔铜箔微观组织及性能研究    

姓名:

 贾亚鹏    

学号:

 20211225060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 电解铜箔    

第一导师姓名:

 孙万昌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-17    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study of microstructure and properties of electrodeposited porous copper foil    

论文中文关键词:

 多孔铜箔 ; 氢气泡模板法 ; 添加剂 ; 微观组织 ; 电化学分析 ; 电学性能    

论文外文关键词:

 porous copper foil ; hydrogen bubble template method ; additive ; microstructure ; electrochemical analysis ; electrical properties    

论文中文摘要:

新能源产业的快速发展对锂电池储能提出更高要求,锂电池负极材料在电池工作中起着能量的储存与释放的作用,因此负极材料的研发成为提高电池能量密度的关键。平面铜箔作为传统的锂电池负极材料,在充放电过程中难以缓解金属锂的体积膨胀和抑制锂枝晶的生长,已经无法满足高功率负极材料的要求。新一代负极材料中具备极高比表面积的多孔铜箔不仅可以为金属锂提供更多容纳空间,缓解锂枝晶的生长,还可以承载更多的活性物质,增大电池容量。因此,设计具有三维空间结构的多孔铜箔成为一种提升锂电池性能的有效策略。

本课题采用“低铜高酸”的基础电解液探究稳定、高效的电沉积工艺参数,明确三种添加剂及其对应的复合添加剂在多孔铜箔电沉积过程中的浓度配比及作用机制,以期优化制备工艺,提升多孔铜箔品质。本课题主要研究内容及结论如下:

(1) 研究了铜离子浓度、电沉积时间以及电流密度对多孔铜箔微观组织以及电学性能的影响。研究表明:选用稳定的基础电解液25 g/L Cu2+、110 g/L H2SO4,合适的工艺参数电沉积时间25 s、电流密度3 A/cm2,制备的多孔铜箔表面孔径分布均匀且孔壁间结合力强。此时,沉积层平均孔径约68.15 μm,孔面积占比达41.43%,表面粗糙度Sa和Sz分别达29.08 μm和238 μm,表明所制备的多孔铜箔具有较高的比表面积。此外,多孔铜箔较低的电阻(11.98 mΩ)使其具有良好的导电性。Li/Cu半电池测试结果显示多孔铜箔性能明显优于商用平面铜箔。电化学阻抗谱表明多孔铜集流体具备更低的电荷转移阻抗。

(2) 研究了Cl-(浓HCl)、羟乙基纤维素(HEC)和聚乙二醇(PEG)三种单一添加剂对多孔铜箔微观组织以及电学性能的影响,进一步研究其对多孔铜箔电沉积作用机制。结果表明:Cl-、HEC和PEG的加入均会起到细化晶粒的作用。Cl-可以促进铜沉积量,而HEC和PEG则抑制铜沉积量。当Cl-浓度为20 mg/L时,沉积层孔径尺寸较大,孔壁间致密性高,铜箔厚度增加;当HEC浓度为9 mg/L时,沉积层表面晶粒细小,微孔数量多且分布均匀,铜箔光亮度明显增加;当PEG浓度为15 mg/L时,沉积层枝晶状特征减弱,铜晶粒以颗粒状平整的堆叠生长。此外,当Cl-浓度为20 mg/L时,所制备的多孔铜集流体表现出良好的循环性能和电导率。

(3) 研究了Cl-、HEC和PEG组成的双组份和三组份复合添加剂体系对多孔铜箔微观组织及电学性能的影响,进一步研究了三组份添加剂体系对多孔铜箔电沉积作用机制。结果表明:在一定浓度内的Cl-和HEC复合添加剂体系制备的多孔铜箔孔壁间致密性明显提升;Cl-和PEG复合添加剂体系制备的多孔铜箔表面微孔数量明显增多,孔径尺寸明显减小;三组份复合添加剂体系制备的多孔铜箔沉积层孔径尺寸进一步减小,三维多孔结构特征显著。当三组份添加剂体系浓度为Cl-浓度20 mg/L,HEC浓度6 mg/L,PEG浓度7 mg/L时,多孔铜箔表面微孔数量多且分布均匀,同时,该浓度下的多孔铜箔具备较低的电阻值(8.21 mΩ),并且其装配的半电池具备优异的循环性能和导电性能。

论文外文摘要:

The rapid development of the new energy industry has put forward higher requirements for lithium battery energy storage. Lithium battery anode material plays the role of energy storage and release in the working of the battery, so the development of anode material becomes the key to improve the energy density of the battery. Planar copper foil as a traditional lithium battery anode material, it is difficult to alleviate the volume expansion of lithium metal and inhibit the growth of lithium dendrites during the charging and discharging process, which has failed to meet the requirements of high-power anode materials. Among the new generation of anode materials, porous copper foil with a high specific surface area can not only provide more space for lithium metal and alleviate the growth of lithium dendrites, but also carry more active material and increase the battery capacity. Therefore, the design of porous copper foils with a three-dimensional (3D) space structure has become an effective strategy to improve the performance of lithium batteries.

In this study, the basic electrolyte 'low copper and high acid' is used to explore stable and efficient electrodeposition process parameters. The concentration ratios and mechanisms of the three additives and their corresponding composite additives in the electrodeposition process of porous copper foil are clarified, aiming to optimize the preparation process and improve the quality of porous copper foil. The main research and conclusions of this paper are as follows:

(1) The effects of copper ion concentration, electrodeposition time and current density on the microstructure and electrical properties of the porous copper foil were investigated. The results show that the porous copper foil prepared with the stable basic electrolyte 25 g/L Cu2+ and 110 g/L H2SO4,and the appropriate process parameters of 25 s electrodeposition time and current density of 3 A/cm2 has a uniform pore size distribution and a strong adhesion between the pore walls. Simultaneously, the average pore size of the deposited layer is about 68.15 μm, with a pore area ratio of 41.43% and the surface roughness Sa and Sz reach 29.08 and 238 μm, respectively, indicating that the prepared porous copper foil possesses a high specific surface area. In addition, the low resistance of the porous copper foil (11.98 mΩ) gives it good electrical conductivity. The test results of Li/Cu half-cells show that the porous copper foil performance is significantly better than that of commercial planar copper foils. Electrochemical impedance spectra indicate that the porous copper collector has a lower charge transfer impedance.

(2) The effects of three single additives such as Cl- (HCl), hydroxyethyl cellulose (HEC) and polyethylene glycol (PEG), on the microstructure and electrical properties of porous copper foils were studied, and the mechanism of electrodeposition on porous copper foil was further explored. The results show that the addition of Cl-, HEC and PEG play a role in refining the grain size. The Cl- can promote the copper deposition, while the HEC and PEG inhibited the copper deposition. When the concentration of Cl- is 20 mg/L, the pore size of the deposited layer is larger, the denseness between the pore walls is higher, and the thickness of the copper foil increases. when the concentration of HEC is 9 mg/L, the surface grains of the deposited layer are fine, the number of micro-pores is large and uniformly distributed, and the brightness of the copper foil increases significantly. when the concentration of PEG is 15 mg/L, the dendritic characteristics of the deposited layer are weakened, and the copper grains grow in flat stacks of granular shape. In addition, the porous copper collectors prepared at a Cl- concentration of 20 mg/L presented good circulation performance and electrical conductivity.

(3) The effects of the two-component and three-component composite additive systems consisting of Cl-, HEC and PEG on the microstructure and electrical properties of porous copper foils were studied, and the mechanism of the effect of the three-component additive systems on the electrodeposition of porous copper foils was further explored. The results demonstrate that the density between the pore walls of the porous copper foil prepared by the Cl- and HEC additive system at a certain concentration is significantly improved. the number of micropores on the surface of the porous copper foil prepared by the Cl- and PEG additive system is significantly increased, and the pore size is significantly reduced. the pore size of the deposited layer of the porous copper foil prepared by the three-component additive system is further reduced and the 3D porous structure characteristics are significant. When the concentration of the three-component additive system is Cl- 20 mg/L, HEC 6 mg/L and PEG 7 mg/L, the porous copper foil exhibits a high number of micropores with a uniform distribution. Meanwhile, the porous copper foil has a lower resistance value (8.21 mΩ) and the assembled half-cell has excellent cycling performance and electrical conductivity.

参考文献:

[1] 李海杰. 锂电池技术在储能领域的应用与发展趋势研究[J]. 中国设备工程, 2023, (2): 189-91.

[2] 刘文婷. 我国锂电产业发展新特征及安全问题研究[J]. 智能网联汽车, 2022, (6): 86-92.

[3] 孟亚斌. 高性能锂电池材料的应用趋势研究[J]. 化工设计通讯, 2022, 48(10): 49-51.

[4] Li M, Chen Z W, Amine K. 30 Years of Lithium‐Ion Batteries[J]. Advanced Materials, 2018, 30(33): 1822561.

[5] Schipper F, Aurbach D. A brief review: Past, present and future of lithium ion batteries[J]. Russian Journal of Electrochemistry, 2016, 52(12): 1095-121.

[6] Shao Q J, Zhu S D, Chen J. A review on lithium-sulfur batteries: Challenge, development, and perspective[J]. Nano Research, 2022: 1-42.

[7] Zhang L Q, Zhu C X, Yu S C, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemsity, 2022, 66: 260-94.

[8] Li Z, Huang J, Liaw B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-82.

[9] 乔乔. 高性能锂电池材料的应用趋势探讨[J]. 绿色环保建材, 2020, 2(5): 6.

[10] Liu L H, Lyu J, Zhao T K, et al. Preparations and Properties of Porous Copper Materials for Lithium-Ion Battery Applications[J]. Chemical Engineering Communications, 2016, 203(6): 707-13.

[11] Zhang H, Zhao Z, Yang L, et al. Nitrogen-doped hierarchical porous carbon derived from metal-organic aerogel for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2017, 26(6): 1282-90.

[12] 魏文强. 碳中和背景下新能源汽车产业发展研究[J]. 时代汽车, 2023, (6): 87-89.

[13] 程新兵, 张强. 金属锂电池[J]. 科学观察, 2022, 17(6): 25-27.

[14] Aneke M, Wang M H. Energy storage technologies and real life applications-A state of the art review [J]. Applied Energy, 2016, 179: 350-77.

[15] Liu K L, Li K, Peng Q, et al. A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of Mechanical Engineering, 2019, 14(1): 47-64.

[16] Parent A. Giovanni Aldini: from animal electricity to human brain stimulation[J]. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques, 2004, 31(4): 576-84.

[17] Gidwani M, Bhagwani A, Rohra N. Supercapacitors: the near Future of Batteries[J]. International Journal of Engineering Inventions, 2014, 4(5):22-27.

[18] Mischie S, Dan S. A new and improved model of a lead acid battery[J]. Facta Universitatis, 2007, 20(2):187-202.

[19] Zhang N, Cheng F Y, Liu J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8:405.

[20] Jma C, Sna B, Jz A, et al. The electrochemical performance of nickel chromium oxide as a new anode material for lithium ion batteries-ScienceDirect[J]. Electrochimica Acta, 2015, 176: 1420-6.

[21] Zhu N, Zhang L, Li C, et al. Recycling of spent nickel-cadmium batteries based on bioleaching process[J]. Waste Management, 2003, 23(8): 703-8.

[22] Kulova T L. A Brief Review of Post-Lithium-Ion Batteries [J]. International Journal of Electrochemical Science 2020, 15(8):7242-7259.

[23] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(1):1-15.

[24] Whitingham M S. Electrical Energy Storage and Intercalation Chemistry[J]. Science, 1976, 192(4244):1126-1127.

[25] Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 1-7.

[26] Zhang H, Li C, Eshetu G G, et al. From Solid-Solution Electrodes and the Rocking-Chair Concept to Today's Batteries[J]. Angewandte Chemie International Edition, 2020, 59(2):534-538.

[27] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.

[28] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0

[29] Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries[J]. Solid State Ionics, 1996, 83(1-2): 167-73.

[30] 孟祥娟. 锂离子电池硅负极铜集流体改性及应用[D]; 浙江: 浙江大学, 2021.

[31] 胡敏,王恒,陈琪. 电动汽车锂离子动力电池发展现状及趋势[J]. 汽车实用技术, 2020, (9): 8-10.

[32] 王福鸾,杜军,裴金海. 全球锂电池市场状况和应用发展综述[J]. 电源技术, 2014, 38(3): 561-568.

[33] Sun Y H, Zhao W B, Wang X R, et al. Progress of carbon and Metal-Based Three-Dimensional materials for Dendrite-Proof and Interface-Compatible lithium metal anode[J]. Applied Surface Science, 2022, 598: 153785.

[34] 焦萌, 张文佳, 许薇. 抑制金属锂二次电池锂枝晶生长的研究进展[J]. 电源技术, 2022, 46(7): 697-702.

[35] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy and Environmental Science, 2012, 5(7): 7854-63.

[36] Zhou L T, Zhang W K, Wang Y F, et al. Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges[J]. Journal of Chemistry, 2020, 2022: 6904517.

[37] Yu Z C, Cao L Y, Liu H B, et al. High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions[J]. Energy Storage Materials, 2021, 43: 158-167.

[38] Liang X H, Wu Q M, Lan L X, et al. Study on the Properties of LiMn2O4/Li1.5Al0.5Ge1.5(PO4)3 Composite Cathode Materials[J]. International Journal of Electrochemical Science, 2019, 14: 10153-10161.

[39] Wang Q, Peng D C, Chen Y X, et al. A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 818: 68-75.

[40] 冯艳艳. 高性能锂电池材料的应用研究[J]. 现代盐化工, 2022, 49(5): 44-46.

[41] 魏琳. 锂离子电池电解液中锂盐与电池性能的关系[J]. 山西化工, 2022, 42(7): 80-82.

[42] Zhang L P, Li X L, Yang M R, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective[J]. Energy Storage Materials, 2021, 41: 522-545.

[43] 索鎏敏, 李泓. 锂离子电池过往与未来[J]. 物理, 2020, 49(1): 17-23.

[44] 耿瑶瑶, 桑林, 丁飞, 等. 金属锂二次电池锂电极的研究进展[J]. 电源技术, 2019, 43(1): 158-161.

[45] Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 16114.

[46] Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3): 227-235.

[47] Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.

[48] Ely D R, Garcia E. Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): A662-A668.

[49] Ding F, Xu W, Graff G L, et al. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.

[50] Zhu S Q, Hu C, Xu Y, et al. Performance improvement of lithium-ion battery by pulse current[J]. Journal of Energy Chemistry, 2020, 46: 208-214.

[51] Shen L, Wu H B, Liu F, et al. Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries[J]. Advanced Functional Materials, 2020, 30(49): 2003055.

[52] Lin S S, Zhao J B. Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO2 Cathode and Lithium Metal Anode[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8316-8323.

[53] Cheng J, Hou G M, Sun Q, et al. A novel coral-like garnet for high-performance PEO-based all solid-state batteries[J]. Science China-Materials, 2022, 65(2): 364-372.

[54] 葛武杰, 高乾森, 马先果, et al. 二次电池金属锂负极的研究进展[J]. 电子元件与材料, 2020, 39(1): 1-9.

[55]Zhang X G, Sui X, Zhou S S, et al. Li-B alloy with artificial solid electrolyte interphase layer for long-life lithium metal batteries[J]. Solid State Ionics, 2020, 354: 115408.

[56] Wang L P,, Zhang L, Wang Q J, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating[J]. Energy Storage Materials, 2018, 10: 16-23.

[57] Rahman M A, Wong Y C, Song G S, et al. A review on porous negative electrodes for high performance lithium-ion batteries[J]. Journal of Porous Materials, 2015, 22(5): 1313-1343.

[58] Zhu Y D, Huang Y, Wang M Y, et al. Three-dimensional hierarchical porous MnCo2O4@MnO2 network towards highly reversible lithium storage by unique structure[J]. Chemical Engineering Journal, 2019, 378: 122207.

[59] Yun Q B, He Y B, Lv W, et al. Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939.

[60] 雷琳娜. 新型多孔铜集流体的构建及稳定锂金属负极的研究[D]. 南京: 南京邮电大学, 2021.

[61] 黄彩敏. 多孔材料的应用研究与发展前景[J]. 装备制造技术, 2014, (2): 230-232.

[62]Egorov V, O'dwyer C. Architected porous metals in electrochemical energy storage[J]. Current Opinion in Electrochemisry, 2020, 21: 201-208.

[63] 王妮. 电化学方法构建多孔金属薄膜及性能研究[D]. 成都: 电子科技大学, 2012.

[64] 田莎莎. 添加剂对脉冲沉积电解铜箔微观组织及性能的影响[D]. 西安: 西安科技大学, 2022.

[65] 谭凯. 锂离子电池集流体用多孔铜箔的制备与研究[D]. 北京: 清华大学, 2009.

[66] Shi Y J, Wang Z B, Gao H, et al. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(3): 1092-1098.

[67] 郝鑫, 杨惠, 畅阁, et al. 多孔铜材料的制备方法及其应用进展[J]. 金属材料与冶金工程, 2018, 46(2): 3-7.

[68] 禹贤斌, 李永喜, 袁斌. 去合金化制备纳米多孔铜及铜合金的最新研究进展[J]. 材料导报, 2015, 29(15): 134-141.

[69] 徐云浩, 王岚, 余森, et al. 去合金化制备纳米多孔金属材料研究进展[J]. 热加工工艺, 2021, 50(10): 12-16.

[70] Snn Y X, Ren Y B, Yang K. New preparation method of micron porous copper through physical vacuum dealloying of Cu-Zn alloys[J]. Materials Letters, 2016, 165: 1-4.

[71] Snn Y X, Ren Y B. New preparation method of porous copper powder through vacuum dealloying[J]. Vacuum, 2015, 122: 215-217.

[72] 马玉豪. 多孔集流体的制备及其对锂电池性能的影响[D]. 沈阳: 沈阳理工大学, 2022.

[73]Zhang L, Zhan Y W, Bian H D, et al. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes[J]. Journal of Power Sources, 2014, 257: 374-379.

[74] 党扬扬. 改性铜集流体对提高锂金属负极稳定性的研究[D]. 西安: 西安建筑科技大学, 2020.

[75] 邹丽杰. 多孔金属铜的去合金化制备及其孔隙结构的同步辐射研究[D]. 武汉: 武汉理工大学, 2022.

[76] 于伟. 脱合金法制备锂/钠离子电池负极材料及性能表征的研究[D]. 济南: 山东大学, 2016.

[77] 王耀辉, 成凯, 曹卜元, 等. 造孔剂含量对多孔金属材料性能的影响[J]. 粉末冶金工业, 2022, 32(2): 57-61.

[78] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 78-93.

[79] 黄本生, 彭昊, 陈权, 等. 粉末烧结法制备多孔铜及其性能研究[J]. 有色金属工程, 2018, 8(1): 11-15.

[80] 陈剑宇. 三维多孔铜集流体的制备及稳定金属锂负极的研究[D]. 南京: 南京邮电大学, 2020.

[81] 王清周, 李诺, 王倩, 等. 以NaCl为造孔剂制备开孔多孔铜的孔隙形貌及压缩性能[J]. 机械工程材料, 2011, 35(4): 53-56.

[82] Fan H L, Dong Q Y, Gao C H, et al. Powder-sintering derived 3D porous current collector for stable lithium metal anode[J]. Materials Letters, 2019, 234: 69-73.

[83] Chen J Y, Li S J, Qiao X, et al. Integrated Porous Cu Host Induced High-Stable Bidirectional Li Plating/Stripping Behavior for Practical Li Metal Batteries[J]. Small, 2021, 18(6): 2105999.

[84] 黄隆. 印刷模板法制备多孔铜箔及其锂离子电池集流体应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

[85] 瞿静. 以可溶性气凝胶为模板的纳米多孔金属制备方法研究[D]. 绵阳: 西南科技大学, 2016.

[86] Zhang W Y, Li J L, Chen H X, et al. Natural Template-Derived 3D Porous Current Collector for Dendrite-free Lithium Metal Battery[J]. Nano, 2020, 15(3): 2050033.

[87] Zhang J P, Yu L P. Preparation of three-dimensional ordered macroporous Cu2O film through photonic crystal template-assisted electrodeposition method[J]. Journal of Materials Science Materials in Electronics, 2014, 25(12): 5646-5651.

[88] 徐宏刚. 多孔铜材料的制备工艺研究[D]. 西安: 西安建筑科技大学, 2020.

[89] Shi Y, Zhang L, Zhang Y S, et al. Construction of a hierarchical porous surface composite electrode by dynamic hydrogen bubble template electrodeposition for ultrahigh-performance thermally regenerative ammonia-based batteries[J]. Chemical Engineering Journal, 2021, 423: 130339.

[90] Suk J, Kim D Y, Kim D W, et al. Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(8): 2478-81.

[91] 崔程. 微孔铜箔制备装置及工艺研发[D]. 淄博: 山东理工大学, 2020.

[92] 徐宏刚, 王碧侠, 王子钰, 等. 氢气泡模板法电沉积制备三维多孔铜的工艺参数研究[J]. 矿冶工程, 2020, 40(5): 115-119.

[93] Zhang W B, Ding C, Wang A J, et al. 3-D Network Pore Structures in Copper Foams by Electrodeposition and Hydrogen Bubble Templating Mechanism[J]. Journal of the Electrochemical Society, 2015, 162(8): D365-D370.

[94] 郭立功. 电解铜箔添加剂的研究现状和发展方向[J]. 中国金属通报, 2021, (12): 7-9.

[95] 孙玥, 刘玲玲, 李鑫泉, 等. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874.

[96] Woo, T G. The Effects of Sis(3-Sulfo-Propyl)di-Sulfide (SPS) Additives on the Surface Morphology and Mechanical Properties of Electrolytic Copper Foil[J]. Journal of Korean Institute of Metal and Materials, 2016, 54(9): 681-687.

[97] Song J M, Zou Y S, Kuo C C, et al. Orientation dependence of the electrochemical corrosion properties of electrodeposited Cu foils[J]. Corrosion Science, 2013, 74: 223-231.

[98] 朱明华, 李立青. 稀土添加剂在金属电沉积中的应用研究进展[J]. 电镀与涂饰, 2006, 26(6): 46-48.

[99] Shin H C, Dong J, Lliu M L. Nanoporous Structures Prepared by an Electrochemical Deposition Process[J]. Advanced Materials, 2010, 15(19): 1610-1614.

[100] 牛凯, 李静如, 李旭晨, 等. 电化学测试技术在锂离子电池中的应用研究[J]. 中国测试, 2020, 46(7): 90-101.

[101] Vogt H, Balzer R J. The bubble coverage of gas-evolving electrodes in stagnant electrolytes[J]. Electrochimica Acta, 2005, 50(10): 2073-2079.

[102] 刘云娥. AZ91D镁合金电镀锌及铜/镍/铬组合镀层工艺研究[D]. 长沙: 湖南大学, 2006.

中图分类号:

 TG146.1    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式