- 无标题文档
查看论文信息

题名:

 双向对拉锚索加固窄小煤柱机理及应用研究    

作者:

 吕伟    

学号:

 21204228078    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085900    

学科:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2021    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土工程    

导师姓名:

 李昂    

导师单位:

 西安科技大学    

第二导师姓名:

 屈花荣    

提交日期:

 2024-06-12    

答辩日期:

 2024-05-30    

外文题名:

 Research on the mechanism and application of bi-directional tie-anchor reinforcement for narrow coal pillars    

关键词:

 对拉锚索 ; 窄煤柱 ; 巷道支护 ; 相似模拟 ; 数值模拟    

外文关键词:

 Tie anchor cable ; Narrow coal pillar ; Roadway support ; Similar simulation ; Numerical simulation    

摘要:

陕西韩城桑树坪煤矿3315工作面回采巷道采用留设沿空巷道窄煤柱,但由于受残余动压、煤体水力冲孔等影响沿空巷道变形剧烈,施工困难,顶板破碎,后期返修频繁,变形量极难控制。为提出最优支护方案,有效的控制围岩变形,需对窄煤柱加固机理及沿空留巷围岩稳定性进行研究。基于此,综合运用了理论分析、相似模拟、数值模拟及现场实测等技术方法,探讨了对拉锚索在窄煤柱双向加固技术的实际应用效果,分析了对拉锚索的作用机理和变化规律,为双向加固技术应用于沿空巷道窄煤柱加固工程提供了坚实的理论依据,主要结论如下:

(1)现场调研分析得出3315回风巷围岩控制关键难题为:①当3317回顺开挖,煤柱体处于塑性状态,受力状态更加复杂,进一步导致煤体强度降至残余强度,承载能力进一步下降。②由于自旋锚杆支护力的滞后性,以及在3317回顺掘巷期间施工的不协调性,导致支护结构未能及时形成有效的力学联系,限制了对煤柱承载力的提升。尽管锚杆表面未见明显断裂,实际上锚杆作为一个整体发生外移,其锚固点分布在煤柱的中央和侧壁,由于煤柱已进入塑性状态,内部裂隙增多,缺乏有效的中央残余应力恢复区,使锚固效果受限。

(2)基于3315工作面关键硬岩层破断的特性,构建了关键三角板块结构力学模型,评估了掘进阶段和回采阶段煤体对上覆关键岩块的支撑力以及弧形三角岩块的受力情况,确保窄煤柱顶部弧形三角岩块稳定;建立了实体煤弹塑性力学模型,分析了其上部承受的覆岩压力分布规律,结合侧向支承压力峰值表达式和窄煤柱留设合理宽度,代入参数,考虑到煤层为三软煤层,需在原支护基础上进行加强支护。

(3)以3315工作面沿空巷道窄煤柱为研究对象,基于相似原理,设计试验方案,对对拉锚索加固煤柱承压性能进行研究。分别开展了原支护及优化支护等多种方案下的相似模拟试验,对拉锚索加固下的模型较未加固模型承载力有了显著提高,且随着间排距减小,承载强度在提高。当加载到最大外部荷载时,双排对拉锚索和四排对拉锚索的小间距模型均未发生破坏,变形量不大,可以起到加固煤柱的目的。

(4)根据实际工况建立数值分析模型,并基于理论分析和相似模拟试验的结果,模拟原支护和加强支护方案下沿空巷道围岩变形特征,研究得出原支护方案下工作面的回采对沿空巷道造成应力叠加,应力集中系数增大,随着矿山压力增加,煤柱帮一侧顶板将会形成贯通性裂隙至煤柱帮底部。但双向对拉锚索加固使围岩整体强度提高,使集中应力系数变小,能够有效抵抗顶板来压,同时限制了围岩进一步滑移破坏,并且控制围岩变形量。

(5)针对桑树坪煤矿3315回顺巷道变形量极难控制的问题,设计了新型对拉锚索,提出双排对拉锚索加固煤柱为最优加强支护方案,应用于现场并进行数据监测,分析监测数据得出采用最优加强支护方案的巷道帮部收敛量平均仅为37.3mm,顶板的平均下沉量为21.6mm,围岩的平均变形量仅为原支护方案的18.6%。此外,巷道顶板的离层量也较小,围岩稳定后平均深部位移仅为原支护方案的17.8%,提出的最优加强支护方案对控制沿空巷道围岩变形有效性显著,同时验证了研究方法的科学性。

外文摘要:

Shaanxi Hancheng Sangshuping coal mine 3315 working face back to mining roadway using leave along the empty roadway narrow coal pillar, but due to the residual dynamic pressure, coal hydrodynamic punching and other impacts along the empty roadway deformation is intense, construction difficulties, the roof plate is broken, the later return to repair frequently, the amount of deformation is extremely difficult to control. In order to propose the optimal support scheme and effectively control the deformation of the surrounding rock, it is necessary to study the reinforcement mechanism of the narrow coal pillar and the stability of the surrounding rock along the hollow stay roadway. Based on this, the theoretical analysis, similar simulation, numerical simulation and field measurement and other technical methods are comprehensively used to explore the practical application effect of the two-way reinforcement technology of the pulling anchor cable in the narrow coal column, and analyse the mechanism of the role of the pulling anchor cable and the change rule, which provides a solid theoretical basis for the application of the two-way reinforcement technology in the reinforcement of the narrow coal column along the empty roadway, and the main conclusions are as follows:

(1) The key difficulties in controlling the surrounding rock of 3315 back to the wind tunnel were analysed from the on-site research: ①When 3317 back to the excavation, the coal pillar body was in the plastic state, and the stress state was more complicated, which further led to the strength of the coal body dropping to the residual strength, and the bearing capacity was further reduced. Due to the lagging of the support force of the spinning anchors and the uncoordinated construction during the excavation of 3317, the support structure failed to form an effective mechanical connection in time, which limited the enhancement of the bearing capacity of the coal pillar. Although the surface of the anchor rods did not see any obvious fracture, in fact, the anchor rods as a whole shifted outward, and their anchorage points were distributed in the centre and sidewalls of the coal column, which limited the anchorage effect due to the fact that the coal column had entered the plastic state, the internal fissures increased, and the lack of an effective central residual stress recovery zone.

(2) Based on the characteristics of breaking the key hard rock layer in the 3315 working face, a structural mechanics model of the key triangular slab was constructed to evaluate the support force of the coal body on the overlying key rock block and the force of the arc-shaped triangular rock block at the stage of digging and mining back to ensure the stability of the arc-shaped triangular rock block on the top of the narrow coal pillar; an elasticity-plasticity mechanics model of the solid coal was established to analyse the distribution law of the overlying pressure on the overlying rock borne by the upper part of the coal body, and combined with the expression of the peak value of the support pressure and the reasonable width left for the narrow pillar to substitute the parameters. The expression of peak bearing pressure and the reasonable width of the narrow coal pillar are substituted into the parameter, considering that the coal seam is three soft coal seams, the support needs to be strengthened on the basis of the original support.

(3) Taking the narrow coal pillar along the open roadway of 3315 working face as the research object, based on the principle of similarity, the test scheme was designed to study the pressure-bearing performance of the coal pillar reinforced by pulling anchor cable. Similar simulation tests were carried out under the original support and optimised support schemes, and the load carrying capacity of the model reinforced with tie-anchor cables was significantly improved compared with that of the unreinforced model, and the load carrying strength was improved with the reduction of the spacing between the rows. When loaded to the maximum external load, the small spacing models with two rows of tie-anchors and four rows of tie-anchors were not damaged, and the deformation was not large, which could serve the purpose of reinforcing the coal pillar.

(4) Numerical analysis model is established according to the actual working conditions, and based on the results of theoretical analysis and similar simulation tests, the deformation characteristics of the surrounding rock along the open roadway under the original and reinforced support scheme are simulated, and the study concludes that the return of the working face under the original support scheme causes the superposition of stresses on the roadway along the open roadway, and the concentration coefficient of the stresses increases, and with the increase of the pressure in the mine, the roof plate of the side of the coal pillar gang will form a penetrating fracture to the bottom of the coal pillar gang. However, the two-way tensile anchor cable reinforcement improves the overall strength of the surrounding rock, so that the concentrated stress coefficient becomes smaller, and can effectively resist the roof to pressure, and at the same time limit the further slippage damage of the surrounding rock, and control the amount of deformation of the surrounding rock.

(5) Aiming at the problem that it is extremely difficult to control the deformation of 3315 return roadway of Sangshuping Coal Mine, a new type of tie-back anchor cable was designed, and the optimal strengthening support scheme was proposed to strengthen the coal pillar with double rows of tie-back anchor cables, which was applied in the field and data monitoring was carried out, and the analysis of the monitoring data showed that the average amount of convergence of the gang part of the roadway using the optimal strengthening support scheme was only 37.3mm, and the average amount of roof plate sinking was 21.6mm.The average deformation of the surrounding rock is only 18.6% of the original support scheme. In addition, the amount of the roadway top plate is also smaller, and the average deep displacement of the surrounding rock after stabilisation is only 17.8% of the original support scheme. The proposed optimal strengthening support scheme is effective in controlling the deformation of the surrounding rock along the open roadway, and it also verifies the scientific validity of the research method.

参考文献:

[1]王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11–16.

[2]杨胜利. 基于中厚板理论的坚硬厚顶板破断致灾机制与控制研究[D]. 中国矿业大学,2019.

[3]王家臣,吕华永,王兆会,等. 特厚煤层卸压综放开采技术原理的试验研究[J]. 煤炭学报,2019,44(3):906-914.

[4]鞠文君,郑建伟,魏东,等. 急倾斜特厚煤层多分层同采巷道冲击地压成因及控制技术研究[J]. 采矿与安全工程学报,2019,36(2):280-289.

[5]杨依卓,张百胜,郭俊庆,等. 综放工作面小煤柱动压巷道切顶卸压-锚注加固协同控制技术研究[J]. 煤炭技术,2023,42(3):27-32.

[6]钱鸣高. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.

[7]李松峰,陈军锋. 极近距离煤层下行开采巷道围岩支护技术研究[J]. 矿业安全与环保,2022,49(2):127-131.

[8]鲍永生. 特厚煤层综放工作面智能控制关键技术研究[J]. 煤炭科学技术,2020,48(7):55-61.

[9]李金华,谷拴成,李昂. 浅埋煤层大采高工作面矿压显现规律[J]. 西安科技大学学报,2010,30(04):407-411+416.

[10]郝登云,吴拥政,陈海俊,等. 采空区下近距离特厚煤层回采巷道失稳机理及其控制[J]. 煤炭学报,2019,44(9):2682-2690.

[11]杨胜利. 基于中厚板理论的关键岩层变形及破断特征研究[J]. 煤炭学报,2020,45(8):2718-2727.

[12]王志强,武超,罗健侨,等. 特厚煤层巨厚顶板分层综采工作面区段煤柱失稳机理及控制[J]. 煤炭学报,2021,46(12):3756-3770.

[13]孟祥军,赵鹏翔,王绪友,等. 倾斜厚煤层沿空掘巷窄煤柱留设尺寸及围岩控制技术研究[J]. 西安科技大学学报,2022,42(3):413-422.

[14]徐青云,黄庆国,张广超. 综放剧烈采动影响煤巷窄煤柱破裂失稳机理与控制技术[J]. 采矿与安全工程学报,2019,36(5):941-948.

[15]李壮壮,李永亮,杨鹏飞,等. 窄煤柱巷道非均匀变形因素及稳定性控制[J]. 煤炭技术,2023,42(3):5-13.

[16]田春阳,常云博,朱涛,等. 6m大采高工作面沿空掘巷窄煤柱宽度及围岩控制技术研究[J]. 煤炭工程,2021,53(12):39-44.

[17]和树栋. 平煤十三矿沿空掘巷窄煤柱留设及支护技术应用实践[J]. 中国矿业,2021,30(6):146-151.

[18]冯丽,王华. 特厚煤层小煤柱沿空掘巷支护技术研究[J]. 煤炭技术,2024,43(1):66-69.

[19]张海东,陈永峰,石磊. 深部沿空掘巷窄煤柱留设及覆岩稳定性模拟研究[J]. 煤炭技术,2019,38(9):11-14.

[20]闫皓东,连清旺,王文欢. 巷采厚煤层上位煤层开采覆岩结构稳定性研究[J]. 煤炭技术,2023,42(11):35-39.

[21]董太华,谢正正,张农,等. 急倾斜煤岩互层巷道非对称变形特征及跨界锚注差异化支护技术[J]. 煤矿安全,2022,53(4):113-120.

[22]张智强,赵浩亮,曹新云,等. 特厚煤层小煤柱加固及双柔模墙留巷支护设计研究[J]. 煤炭工程,2022,54(6):46-51.

[23]邢天海,王波,王军,等. 深部厚煤层沿空掘巷留设煤柱加固试验研究[J]. 煤炭技术,2019,38(1):33-36.

[24]杨依卓,张百胜,郭俊庆,等. 综放工作面小煤柱动压巷道切顶卸压-锚注加固协同控制技术研究[J]. 煤炭技术,2023,42(3):27-32.

[25]周贤,常雁,魏全德,等. 孤岛工作面非等宽区段煤柱锚注加固技术应用[J]. 煤炭工程,2022,54(12):44-49.

[26]朱前进. 泥岩顶板下条带煤柱加固设计研究[J]. 煤,2022,31(6):37-39+42.

[27]陈正拜,李永亮,杨仁树,等. 窄煤柱巷道非均匀变形机理及支护技术[J]. 煤炭学报,2018,43(7):1847-1857.

[28]徐永祥. 特厚煤层大采高综放面沿空掘巷支护技术[J]. 煤矿开采,2017,22(20):51-55,77.

[29]周钢,王鹏举,邹长磊,等. 复杂构造应力采区沿空掘巷非对称支护研究[J]. 采矿与安全工程学报,2014,31(6):901-906.

[30]裴孟松,鲁岩,郭卫彬,等. 含夹矸厚煤层沿空巷道围岩稳定性及支护技术研究[J]. 采矿与安全工程学报,2014,31(6):950-956.

[31]谭云亮,于凤海,宁建国,等. 沿空巷旁支护适应性原理与支护方法[J]. 煤炭学报,2016,41(2):376-382.

[32]YANG H,LIU Y,LI Y,et al. Research on the support of larger broken gateway based on the combined arch theory[J]. Geomechanics and Engineering,2020,23(2):93–102.

[33]IURII K,ANATOLII B. The mechanism of roadway deformation in conditions of laminated rocks[J]. Journal of Sustainable Mining,2018,17(2):41–47.

[34]AZAT G. G,ALEXANDER I. M. Calculation of elastoviscoplastic displacement of well walls in transversal and isotropic rocks[J]. Journal of Mining Institute,2019,236:180–184.

[35]VLADIMIR M,DRAŽANA T,VOJIN Č,et al. Modelling of AT rockbolts parameters for “Soko” underground coal mine[J]. Tehnicki Vjesnik-Technical Gazette,2016,23(3):661–666.

[36]LI A,JI B,Z HOU H,et al. Research on reinforcement mechanism of soft coal pillar anchor cable[J]. Geomechanics and engineering,2022.

[37]LIU Y,LIU J,ZHANG F,et al. Evolution of excavation-induced critical stress ring and corresponding support of deep roadway[J]. Arabian Journal of Geosciences,2022,15(1):118.

[38]TA X,WAN Z. Field and Numerical Investigation on the Coal Pillar Instability of Gob-Side Entry in Gently Inclined Coal Seam[J]. Advances in Civil Engineering,2021.

[39]NING J,WANG J,HU T,et al. An Innovative Support Structure for Gob-Side Entry Retention in Steep Coal Seam Mining[J]. Minerals,2017,7(5):75.

[40]Esterhuizen Gabriel S,Tulu Ihsan B. Analysis of alternatives for using cable bolts as primarysupport at two low-seam coal mines[J]. Intenational Joumal of Mining Science and Technology,2016,26(1):23-30.

[41]ZHANG Z,WANG W,LI S,et al. Analysis on Rockbolt Support Interaction withRoof Dilatancy Above Roadside Backfill Area in Gob-Side Entry Retaining[J]. Geotechnical and Geological Engineering,2018,36(4):2577-2591.

[42]SUN X,ZHAO C,ZHANG Y,et al. Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks[J]. International Journal of Mining Science and Technology,2021,31(2):291–302.

[43]王志强,王鹏,吕文玉,等. 沿空巷道非对称底鼓机理及防控研究[J]. 采矿与安全工程学报,2021,38(2):215-226.

[44]孙东飞,尚奇. 深井6.8m大采高大断面沿空掘巷窄煤柱宽度及围岩控制研究[J]. 煤矿安全,2022,53(7):166-173.

[45]方刚,刘洋,李昂. 神府矿区浅埋煤层工作面煤柱稳定性评价[J]. 煤矿开采,2019,24(1):56-61.

[46]陈晓祥,张天,王逸良. 窄煤柱沿空掘巷巷道围岩变形影响因素及非对称支护技术研究[J]. 河南理工大学学报(自然科学版),2021,40(6):24-33.

[47]曹怀轩,郑金录,姚必成,等. 多次采动影响下巷道支护技术优化研究[J]. 煤炭技术,2022,41(8):50-52.

[48]谷长宛. 沿空掘巷窄煤柱胀锁式对穿锚索加固技术研究[D]. 华北科技学院,2020.

[49]刘晓阳. 高地应力硬岩隧道岩爆预测及主动防控技术研究[D]. 西南交通大学,2021.

[50]张勇,谢铖,孙特,等. 深埋软岩巷道底鼓破坏机制及控制对策研究[J]. 煤炭工程,2022,54(12):50-55.

[51]康添惠,韩进东,孙传保,等. 深部动压巷道围岩变形破坏机理与控制技术研究[J]. 煤炭技术,2023,42(3):96-100.

[52]陈正拜,李永亮,杨仁树,等. 窄煤柱巷道非均匀变形机理及支护技术[J]. 煤炭学报,2018,43(7):1847-1857.

[53]付中华,吴宇,张彦,等. 窄煤柱沿空掘巷采空区水仓充填设计及围岩控制技术研究[J]. 煤炭工程,2022,54(10):1-7.

[54]杨仁树,朱晔,李永亮,等. 弱胶结软岩巷道层状底板底鼓机理及控制对策[J]. 采矿与安全工程学报,2020,37(3):443-450.

[55]乔振强. 大柳塔矿巷道底鼓机理及控制研究[D]. 西安科技大学,2021.

[56]曹平,李好月,钟涌芳,等. 深埋高侧压巷道底鼓机理分析及控制[J]. 中南大学学报(自然科学版),2017,48(2):457-464.

[57]GAO H,GAO Y,QI J,et al. Study on surrounding rock deformation and gascontrol of entry automatically formed by roof cutting in high-gas coal seam[J]. Energy Exploration &,Exploitation,2023,41(5):1559-1575.

[58]LI K,LI Y,WANG Z,et al. Research on the Enlargement of Stope Span Based on the Pre-stressed Expandable Pillar Support Technology[J]. Rock Mechanics and Rock Engineering,2021,54(9):4663-4675.

[59]ZHANG S,WANG X,FAN G,et al. Pillar size optimization design of isolated islandpanel gob-side entry driving in deep inclined coal seam case study of Pingmei No. 6 coal seam[J]. Joumal of Geophysics and Engineering,2018,15(3):816-828.

[60]LI L,QIAN D,YANG X,et al. Pressure relief and bolt grouting reinforcement and width optimization of narrow coal pillar for goaf-side entry driving in deep thick coal seam:A case study[J]. Minerals,2022,12(10):1–16.

[61]HAO J,CHEN A,LI X,et al. Analysis of Surrounding Rock Control Technology and Its Application on a Dynamic Pressure Roadway in a Thick Coal Seam[J]. Energies,2022,15(23):9040.

[62]ZHAO M,ZHANG S,CHEN Y. Reasonable Width of Narrow Coal Pillar of Gob-side EntryDriving in Large Mining Height,IOP Conference Series[J]. Earth and EnvironmentalScience,2017,59(1):12-25.

[63]ZHA W,SHI H,LIU S,et al. Surrounding rock control of gob-side entry driving with narrow coal pillar and roadway side sealing technology in Yangliu Coal Mine[J]. International Journal of Mining Science and Technology,2017,27(5):819-823.

[64]钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报,1994,19(6):557-563.

[65]陈翔宇. 近距离下伏煤巷围岩稳定机理及控制研究[D]. 中国矿业大学,2019.

[66]王波,谷长宛,闫刚. 济宁三号煤矿沿空巷道侧向支承压力分布规律研究[J]. 华北科技学院学报,2019,16(3):7-14.

[67]李磊,柏建彪,王襄禹. 综放沿空掘巷合理位置及控制技术[J]. 煤炭学报,2012,37(9):1564-1569.

[68]李迎富,华心祝,蔡瑞春. 沿空留巷关键块的稳定性力学分析及工程应用[J]. 采矿与安全工程学报,2012,29(3):357-364.

[69]毛世杰. 段王矿15号煤坚硬直接顶沿空掘巷围岩稳定性分析及其控制技术[D]. 中国矿业大学,2018.

[70]许家林,鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报,2011,30(8):1547-1556.

[71]李磊,柏建彪,徐营,等. 复合顶板沿空掘巷围岩控制研究[J]. 采矿与安全工程学报,2011,28(3):376-383+390.

[72]于振子,李昂,韩泰然等. 孤岛工作面防水煤柱留设宽度模拟分析及工程应用[J]. 能源与环保,2023,45(7):266-272.

[73]马耀荣. 特厚煤层开采中沿空掘巷煤柱宽度及稳定性研究[D]. 太原理工大学,2018.

[74]蒋威,鞠文君,汪占领,等. 厚硬基本顶综放沿空巷道覆岩应力分布特征及合理煤柱宽度确定[J]. 采矿与安全工程学报,2020,37(6):1142-1151.

[75]于远祥,柯达,王京滨,等. 基于弹性理论的煤帮极限平衡区宽度确定方法探讨[J]. 煤炭学报,2019,44(11):3340-3348.董伟,王学滨. 岩土工程相似模拟试验观测的可靠子区数字图像相关方法[J]. 岩土力学,2021,42(9):2525–2534.

[76]KONG H,WANG L,GU G,et al. Application of DICM on similar material simulation experiment for rock-like materials[J]. Advances in Civil Engineering,2018,12(1):1–15.

[77]LI A,MA Q,LIAN Y,et al. Numerical simulation and experimental study on foor failure mechanism of typical working face in thick coal seam in Chenghe mining area of Weibei,China[J]. Environmental Earth Sciences,2020,79(5):118

[78]孙海涛,朱墨然,曹偈,等. 突出煤层相似材料配比模型构建的正交试验研究[J]. 煤炭科学技术,2019,47(8):116-122.

[79]TAN X,CHEN W,LIU H,et al. Stressstrain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading[J]. Journal of Materials in Civil Engineering,2018,30(6):18–95.

[80]SUN W,ZHOU H,SHAO J,et al. Development status and prospects of mine physical similar material simulation experiments[J]. Geotechnical and Geological Engineering,2019,37(4):3025–3036.

[81]ZHANG J,WANG Z,SONG Z. Numerical study on movement of dynamic strata in combined open-pit and underground mining based on similar material simulation experiment[J]. Arabian Journal of Geosciences,2020,13(16):785–800.

[82]武永彩,李昂,唐红涛. 滇西北地区近年来应力场的数值模拟研究 [J]. 大地测量与地球动力学,2018,38(12):1238-1240+1279.

[83]LI A,MU Q,ZHANG W Z,et al. Research on a Numerical Simulation and Prediction Model of Floor Mining Failure Depth in the Chenghe Mining Area[J]. Geofluids,2020,2020:8850156.

中图分类号:

 TD353    

开放日期:

 2026-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式