论文中文题名: | 粉煤灰浆液烟气脱氨固碳及充填膏体制备工程特性研究 |
姓名: | |
学号: | 21204228070 |
保密级别: | 内部 |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废处理与综合利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-12 |
论文答辩日期: | 2024-05-31 |
论文外文题名: | Study on engineering characteristics of fly ash slurry flue gas deamination and carbon fixation and filling paste preparation |
论文中文关键词: | |
论文外文关键词: | Fly ash ; Deamination and carbon fixation ; Mineralization storage ; Filling paste properties ; Engineering application |
论文中文摘要: |
我国以煤炭为主体的能源消费结构现阶段难以改变,煤电仍是主要的能源供应方式,但其产生的粉煤灰长期以来因其潜在的危害和未能有效利用而备受关注,同时燃煤烟气中除了有害气体外还有大量的二氧化碳排放,对生态环境有着很大影响。燃煤电厂产生的废弃物已成为环境保护和资源化利用的重要议题。而大掺量粉煤灰基膏体充填开采不仅能同时解决压煤回收、地面沉降和岩层位移等问题,还能高效处置坑口电站固废排放问题,具有良好的发展潜力。但燃煤烟气在脱硝过程中,过量的氨被粉煤灰吸附,这些氨不仅在充填膏体在制备与养护过程中持续释放,还会影响充填膏体性能,严重制约粉煤灰的综合利用。本文提出采用粉煤灰浆液烟气吹脱的方式,对粉煤灰进行初步处理,脱除粉煤灰中的氨,以便粉煤灰能进一步利用,再结合粉煤灰能封存二氧化碳的特性,对烟气中的二氧化碳进行封存。 本文选择三种钙含量不同的含氨粉煤灰,进行粉煤灰浆液烟气脱氨固碳的研究,通过改变烟气吹脱条件,以使脱氨固碳效率达到最优,并结合不同检测手段分析粉煤灰浆液烟气脱氨固碳的机理。随后利用脱氨固碳后的粉煤灰制备成充填膏体,研究充填膏体的氨气释放规律、泵送性能以及力学性能,并结合实验结果和检测手段分析粉煤灰充填膏体特性变化的机理。最后对整个工艺体系进行技术经济可行性分析及环境影响评价。本研究得到以下结论: (1)采用固液比0.2、气浆比800和碱投加量0.5%作为烟吹脱工艺的条件,能使三种粉煤灰整体的脱氨固碳率都能达到较高水平,其中三种粉煤灰整体的脱氨率在80%左右,粉煤灰氨残留量都小于210mg/kg,三种粉煤灰固碳量分别为8.19g/kg、56.16g/kg、90.52g/kg。实验中,在粉煤灰中起到主要封存二氧化碳作用的是粉煤灰中的游离氧化钙,以此计算的三种粉煤灰整体固碳率也在80%上下。 (2)通过SEM和XRD衍射图谱分析可知,粉煤灰浆液中的钙离子和氢氧根离子通过与二氧化碳在水中生成的碳酸根离子反应,生成碳酸钙,从而实现对二氧化碳的封存,碳酸钙主要是以粒状聚合体的形式附着在玻璃晶体上。而在封存二氧化碳的同时,粉煤灰具有火山灰活性,粉煤灰中的钙离子在碱性条件下则可能会有少量水化反应发生。 (3)本实验采用膏体配比为粉煤灰:风积砂:水泥=3:2:1,膏体质量浓度为74%。通过膏体氨气释放规律实验发现,吹脱后膏体在72h内的氨释放量比之前减少65%~75%,能显著改善井下通风环境,同时减少了膏体内部大孔隙产生的可能;而且三种粉煤灰的扩展度约有10%的提升,泌水率也有不同程度的改善,在泵送过程中提升了膏体的流动性、减少了膏体的离析现象;三种粉煤灰的力学性能也有大幅改善,烟气吹脱后膏体抗压强度提升在15%~30%左右。 (4)对于游离氧化钙含量较低的粉煤灰,固碳能力较弱,采用空气对粉煤灰浆液进行吹脱就能很好的改善充填膏体性能,与烟气吹脱相差不大;而对于游离氧化钙含量较高的高含氨量粉煤灰,若只采用空气对粉煤灰浆液进行处理,粉煤灰中钙离子含量过高,膏体在养护后期会因钙矾石晶体的过度生长膨胀出现开裂现象,从而影响膏体强度。所以若采用烟气对粉煤灰浆液进行吹脱处理,不仅粉煤灰中氨气能够有效脱除,还能固定一部分烟气中的二氧化碳,减少钙离子含量,充填膏体性会得到充足改善。 (5)在工程应用中通过设置混合搅拌曝气池,就能够满足粉煤灰浆液烟气脱氨固碳工艺的要求。也可适当减少水泥用量,在提升粉煤灰消纳量的同时,还能提升二氧化碳的封存量,降低成本,具有很好的环境效益、经济效益和社会效益。 |
论文外文摘要: |
China 's energy consumption structure with coal as the main body is difficult to change at this stage. Coal-fired power is still the main way of energy supply. However, the fly ash produced by coal-fired power has long been concerned because of its potential harm and ineffective utilization. At the same time, in addition to harmful gases, there are also a large number of carbon dioxide emissions in coal-fired flue gas, which has a great impact on the ecological environment. The waste generated by coal-fired power plants has become an important issue in environmental protection and resource utilization. High-volume fly ash-based paste filling mining can not only solve the problems of coal recovery, land subsidence and rock displacement at the same time, but also effectively deal with the problem of solid waste discharge from pithead power station, which has good development potential. However, in the process of denitrification of coal-fired flue gas, excessive ammonia is adsorbed by fly ash. These ammonia not only release continuously in the process of preparation and maintenance of filling paste, but also affect the performance of filling paste, which seriously restricts the comprehensive utilization of fly ash. In this paper, the fly ash slurry flue gas stripping method is proposed to preliminarily treat the fly ash and remove the ammonia in the fly ash so that the fly ash can be further utilized. Combined with the characteristics of fly ash that can seal carbon dioxide, the carbon dioxide in the flue gas is sealed. In this paper, three kinds of ammonia-containing fly ash with different calcium content were selected to study the deamination and carbon fixation of fly ash slurry flue gas. By changing the conditions of flue gas stripping, the efficiency of deamination and carbon fixation was optimized, and the mechanism of deamination and carbon fixation of fly ash slurry flue gas was analyzed by different detection methods. Subsequently, the fly ash after deamination and carbon fixation was used to prepare the filling paste. The ammonia release law, pumping performance and mechanical properties of the filling paste were studied, and the mechanism of the change of the characteristics of the fly ash filling paste was analyzed by combining the experimental results and detection methods. Finally, the technical and economic feasibility analysis and environmental impact assessment of the whole process system are carried out. This study draws the following conclusions: (1) Using the solid-liquid ratio of 0.2, the gas-liquid ratio of 800 and the alkali dosage of 0.5% as the conditions of the flue gas stripping process, the overall deamination and carbon fixation rate of the three kinds of fly ash can reach a higher level. The overall deamination rate of the three kinds of fly ash is about 80%, and the ammonia residue of the fly ash is less than 210mg/kg. The carbon fixation of the three kinds of fly ash is 8.19g/kg, 56.16g/kg and 90.52g/kg, respectively. In the experiment, the main role in the storage of carbon dioxide in fly ash is the free calcium oxide in fly ash, and the overall carbon fixation rate of the three kinds of fly ash is also about 80%. (2) Through the analysis of SEM and XRD diffraction patterns, it can be seen that the calcium ions and hydroxide ions in the fly ash slurry react with the carbonate ions generated by carbon dioxide in water to form calcium carbonate, thereby realizing the storage of carbon dioxide. Calcium carbonate is mainly in the form of granular polymers attached to glass crystals. While storing carbon dioxide, fly ash has pozzolanic activity, and calcium ions in fly ash may have a small amount of hydration reaction under alkaline conditions. (3) In this experiment, the paste ratio is fly ash : aeolian sand : cement = 3: 2: 1, and the paste mass concentration is 74%. Through the experiment of ammonia release law of paste, it is found that the ammonia release amount of paste within 72 hours after stripping is 65% -75% lower than that before, which can significantly improve the underground ventilation environment and reduce the possibility of large pores inside the paste. Moreover, the expansion degree of the three kinds of fly ash is increased by about 10%, and the bleeding rate is also improved to varying degrees. In the pumping process, the fluidity of the paste is improved and the segregation of the paste is reduced. The mechanical properties of the three kinds of fly ash are also greatly improved, and the compressive strength of the paste is increased by about 15% ~ 30% after flue gas stripping. (4) For the fly ash with low free calcium oxide content, the carbon fixation ability is weak, and the use of air to blow off the fly ash slurry can improve the performance of the filling paste well, which is not much different from the flue gas blow off ; for high ammonia content fly ash with high free calcium oxide content, if only air is used to treat the fly ash slurry, the calcium ion content in the fly ash is too high, and the paste will crack due to the excessive growth and expansion of the ettringite crystal in the later stage of curing, thus affecting the strength of the paste. Therefore, if the flue gas is used to blow off the fly ash slurry, not only the ammonia in the fly ash can be effectively removed, but also a part of the carbon dioxide in the flue gas can be fixed, the calcium ion content can be reduced, and the filling paste will be fully improved. (5) In engineering applications, by setting a mixed mixing aeration tank, it can meet the requirements of the fly ash slurry flue gas deamination and carbon fixation process. It can also appropriately reduce the amount of cement. While increasing the consumption of fly ash, it can also increase the storage of carbon dioxide and reduce costs. It has good environmental, economic and social benefits. |
参考文献: |
[1]郭栋, 周臣臣, 葛志伟, 等. 煤炭超临界水汽化技术研究进展[J]. 现代化工, 2024, 44(03):43-47+52. [2]国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. 中国政府网, 2023-2-28. [3]刘景, 郭蕊, 申亚威, 等. 粉煤灰提取氧化铝的技术进展[J]. 河南建材, 2017(06):33-35. [4]张治国, 谭雨柠, 胡友彪, 等. 宁东能源化工基地粉煤灰重金属赋存特征及生态风险评价[J]. 煤田地质与勘探, 2022, 50(11):144-152. [5]周广胜, 周莉, 汲玉河, 等. 黄河水生态承载力的流域整体性和时空连通性[J]. 科学通报, 2021, 66(22):2785-2792. [6]陈登红, 李超, 张治国. 宁东矿区气化渣基膏体充填材料性能优化研究[J]. 煤田地质与勘探, 2022, 50(12):41-50. [7]张伟. 房柱式采煤法在井下采煤的应用[J]. 中国新技术新产品, 2012, (18):96. [8]尹大伟, 丁屹松, 汪锋, 等. 考虑初始损伤的压力水浸煤岩力学特性试验研究[J]. 煤炭学报, 2023, 48(12):4417-4432. [9]李志华, 耿倩, 杨科, 等. 综采工作面垮落带注浆充填开采覆岩采动裂隙定量表征试验研究[J]. 中国矿业, 2024, 33(02):159-167. [10]陈博. 矿井水侵蚀作用下采空区充填体力学特性及覆岩移动规律研究[D]. 辽宁工程技术大学, 2023. [11]胡秀林. 金属矿山选矿工艺粉尘治理工程设计[D]. 安徽工业大学, 2018. [12]梁宇廷, 孟棒棒, 林晔, 等. 多种固废协同处理电解锰渣固锰除氨的最优配比及效果分析[J]. 环境工程学报, 2023, 17(07):2342-2351. [13]刘宸嘉, 赵爱春, 李旭, 等. 粉煤灰提取氧化铝研究进展[J]. 中国有色冶金, 2023, 52(01):75-83. [14]吴蒙, 王晓青, 毛礼鑫, 等. 粉煤灰与生活污泥混合制备吸附剂对Cd(Ⅱ)和Cu(Ⅱ)的试验研究[J]. 应用化工, 2023, 52(03):689-696. [15]徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(03):104-111. [17]陈沐阳, 公彦兵. 粉煤灰硅提取技术研究进展[J]. 现代化工, 2023, 43(11):46-50. [18]赵满满, 徐秀月, 王宁宁,等. 秸秆与粉煤灰联合施加对煤矸石污染土壤中黑麦草富集重金属的影响[J]. 环境工程, 2023, 41(12):221-226+287. [19]张学里. 循环流化床粉煤灰有价元素梯级利用研究[D]. 山西大学, 2021. [20]孟德龙. 脱硝还原剂液氨改尿素在国能徐州电厂的应用研究[D]. 中国矿业大学, 2022. [21]邓晓阳, 裴新意, 刘自妥, 等. 粉煤灰中铵离子含量对混凝土减水剂掺量及吸附特性影响[J]. 矿产综合利用, 2022, (03):64-69. [22]张思佳, 孔祥芝, 吴葵, 等. 掺脱硝粉煤灰混凝土的氨气释放连续检测装置与方法[J]. 混凝土, 2021, (04):116-118+121. [23]刘音, 王凯, 郭皓, 等. 含氨粉煤灰对充填膏体性能影响试验研究[J]. 煤炭工程, 2020, 52(10):149-153. [24]陈冬林, 吴康, 曾稀. 燃煤锅炉烟气除尘技术的现状及进展[J]. 环境工程, 2014, 32(09):70-73+162. [25]王献灵. 火电厂烟气排放对大气环境的影响[J]. 科技与创新, 2015, (18):46+49. [26]陈晨, 安东海, 宋佳霖, 等. 不同载体粒径的催化剂对甲烷氧化还原NOx特性及机理[J]. 洁净煤技术, 2023, 29(11):25-34. [28]郭映波, 严月祥, 李博, 等. 转炉干法除尘泄爆问题分析及系统设计[J]. 山西冶金, 2023, 46(11):176-178. [29]阙正斌, 李德波, 肖显斌, 等. 垃圾焚烧烟气联合脱酸工艺经济性[J]. 洁净煤技术, 2023, 29(S2):466-472. [30]詹卓轩, 赵刚, 苏志刚. 基于不确定性补偿的湿法脱硫系统二氧化硫超低排放控制[J]. 热力发电, 2023, 52(12):164-172. [31]李凤果, 熊仁艳, 张敏, 等. 烟气脱硫技术应用于电解铝的研究进展[J]. 现代化工, 2023, 43(S2):72-75. [32]钱大益, 王艳, 叶凯航, 等. 钢铁行业钙基半干法脱硫灰渣资源化利用进展[J]. 工程科学学报, 2024, 46(03):567-579. [33]邝华健. 燃煤电厂330MW机组烟气脱硝工程技术改造[D]. 华南理工大学, 2013. [34]刘昱祺, 徐琰, 汤金龙. 核燃料后处理领域选择性催化还原技术(SCR)应用前景及问题分析[J]. 广东化工, 2023, 50(13):76-78. [36]郭达. 超重力环境下铁活化过硫酸盐溶液脱除模拟烟气中NO技术研究[D]. 中北大学, 2023. [39]顾永正. 煤基能源碳捕集利用与封存技术研究进展[J]. 现代化工, 2023, 43(09):38-41+46. [40]李亚娇, 鱼郑, 鞠恺, 等. 粉煤灰基膏体充填脱氨方法研究综述[J]. 煤炭科学技术, 2023, 51(06):265-274. [41]苗强. 燃煤脱硫技术研究现状及发展趋势[J]. 洁净煤技术, 2015, 21(02):59-63. [42]周屈兰, 刘尧祥, 惠世恩. 高钙粉煤灰直接应用于烟气脱硫的试验研究[J]. 动力工程, 2007, (01):117-121. [44]王民, 汪昊, 王滔, 等.矿粉性能及其对浇注式沥青胶浆高温性能的影响分析[J]. 材料导报, 2023, 37(S1):195-200. [45]王琼, 王林猛, 于峥, 等. 掺烧污泥型粉煤灰矿化封存二氧化碳[J]. 环境工程学报, 2024, 18(01):220-225. [46]HJ 535-2009, 水质.氨氮的测定.纳氏试剂分光光度法[S]. [47]杨刚. 粉煤灰矿化封存CO2协同重金属固化[D]. 华北电力大学(北京), 2021. [48]GB/T 50080-2016, 普通混凝土拌合物性能试验方法标准[S]. [49]梁登科. 脱硝过程伴生硫酸氢氨对于烟气灰颗粒性质影响的实验研究[D]. 山东大学, 2014. [50]夏珍珍, 邢立新, 杨柳, 等. 粉煤灰铵离子对水泥性能的影响[J]. 水泥技术, 2022, (02):64-67+73. [51]市场监管总局, 国家发展改革委, 生态环境部.关于加强锅炉节能环保工作的通知[EB/OL]. 中国政府网, 2018-11-16. [52]曾静, 吴可君, 何潮洪. 低共熔溶剂用于钴酸锂-铜混合粉末的选择性浸出研究[J]. 高校化学工程学报, 2023, 37(01):38-44. [55]杨本涛, 杨燿华, 刘彦廷, 等. 亚硫酸亚铁铵沉淀法去除高浓度氨氮的反应特性及工艺研究[J]. 水处理技术, 2023, 49(08):40-44. [56]孙新祖. 螺旋藻固碳工艺优化及藻蓝蛋白的制备[D]. 中国石油大学(华东), 2019. [58]张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(07):2344-2355. [59]郑海金. 粉煤灰草坪基质及栽培环境的研究[D]. 首都师范大学, 2004. [60]李克亮, 弓晋伟, 申翔宇, 等. 再生骨料裹浆改性用碱激发材料浆液配比优化[J]. 华北水利水电大学学报(自然科学版), 2024, 45(01):73-82. [61]潘福元. 碱-盐协同激发下磨细煤气化灰渣与水泥胶凝硬化机理研究[D]. 新疆农业大学, 2022. [62]尹希文, 于秋鸽, 甘志超, 等. 高钙粉煤灰固碳降碱反应特性及煤矿井下规模化利用新途径[J]. 煤炭学报, 2023, 48(07):2717-2727. [63]李文秀. 基于固废电石渣CO2间接矿化制备轻质碳酸钙机制研究[D]. 浙江大学, 2023. [64]陈迎香. 煤热电固废强化矿化高浓度CO2实验研究[D]. 安徽理工大学, 2023. [65]GB/T 39489-2020, 全尾砂膏体充填技术规范[S]. [67]曹俊, 刘玉亭, 田野, 等. AAC发气与稠化匹配性影响机制研究[J]. 砖瓦, 2024, (02):18-20+24. [70]何玉鑫, 万建东, 华苏东, 等. 免煅烧磷石膏砖的制备和性能研究[J]. 材料导报, 2012, 26(S2):324-327. [71]张海龙, 包森布尔, 聂京凯, 等. 冶金渣-硫铝酸盐胶凝体系材料加热变化及防火机理[J]. 包装工程, 2023, 44(19):265-272. [72]廖宜顺, 叶建, 汤盛文. 海水拌和与偏高岭土对铁铝酸盐水泥水化的影响[J]. 硅酸盐学报, 2023, 51(11):2834-2845. [73]闫泽鹏, 尹升华, 严荣富, 等. 搅拌时间对粗骨料膏体均质性及早期强度的影响[J]. 中国有色金属学报, 2022, 32(04):1164-1174. [76]贺云飞. 脱硝粉煤灰氨释放与留存对水泥混凝土性能的影响[D]. 重庆大学, 2019. [77]于琦, 万小梅, 赵铁军, 等. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(05):100-105. [78]林荣峰. 微膨胀水泥基动水抗分散注浆材料及其岩溶管道封堵机理研究[D]. 山东大学, 2023. [79]渠聪. 粉煤灰基地质聚合物的改性制备及耐久性研究[D]. 大连交通大学, 2022. [80]段后红, 班克成. 普通硅酸盐水泥和低碱度硫铝酸盐水泥复配胶凝体系性能研究[J]. 建筑结构, 2023, 53(S2):1415-1419. [81]高礼雄, 丁汝茜, 姚燕, 等. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 材料导报, 2018, 32(03):503-509. [82]刘赞群, 李湘宁, 邓德华, 等. 硫酸铝盐水泥与硅酸盐水泥净浆水分蒸发区硫酸盐破坏对比[J]. 硅酸盐学报, 2016, 44(08):1173-1177. [83]田艳超, 张海波, 王雨利. 氟石膏和熟石灰碳化养护力学性能的研究[J]. 功能材料, 2024, 55(02):2133-2141. [84]李新颖. 城市生活垃圾焚烧飞灰固化稳定化机制及活性矿物水化产物表征[D]. 东华大学, 2015. [85]马亚, 李传海, 吴传山, 等. 矿渣基胶凝材料稳定碎石路用性能研究[J]. 公路交通科技, 2023, 40(11):10-17. |
中图分类号: | X752 |
开放日期: | 2025-06-13 |