论文中文题名: |
基于双重介质理论的瓦斯抽采钻孔孔周煤体分区渗透机制研究
|
姓名: |
庞明坤
|
学号: |
19120089022
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
张天军
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-23
|
论文答辩日期: |
2022-06-02
|
论文外文题名: |
Study on the Structural Characteristics of "Dual Porosity - Dual Permeability" and the Mechanism of Zoning-Permeability of Coal around Gas Extraction Boreholes
|
论文中文关键词: |
瓦斯抽采 ; 渗流机制 ; 双孔-双渗 ; 钻孔 ; 有效应力 ; 达西流动
|
论文外文关键词: |
Gas extraction ; Seepage mechanism ; Dual porosity- dual permeability ; Borehole ; Effective stress ; Darcy’s flow
|
论文中文摘要: |
︿
钻孔瓦斯预抽是高瓦斯矿井瓦斯治理的重要手段。钻孔的应力集中现象易导致孔周煤体结构发生破坏,孔周呈现环状的“三区”破坏形态(破碎区、裂隙区、原岩区)。抽采钻孔破碎区和裂隙区结构是孔周煤体瓦斯运移的主要通道,目前对于此类孔隙和裂隙组合煤体结构认识不清。这种细观层面上的孔隙和裂隙网络结构致密,孔周破碎区和裂隙区煤体的瓦斯运移过程属于达西渗流和菲克扩散的混合运动,组合介质结构煤体的渗透机制不明。继而导致预抽钻孔有效抽采半径的确定主要依赖于井下测试与现场经验,无法保证煤层瓦斯预抽钻孔设计的普适性,钻孔瓦斯预抽设计缺乏有效的理论指导。因此,采用理论推导、室内试验和现场测试相结合的方法,分析钻孔孔周破碎区和裂隙区的物理等效结构特征,测定破碎单元和裂隙网络煤体的渗透特征参数,建立抽采钻孔孔周煤体的双重介质渗透理论数学模型,研究抽采钻孔孔周煤体的分区渗透机制。主要研究工作如下:
(1)针对瓦斯抽采钻孔孔周煤体瓦斯的汇聚和流动问题,对钻孔孔周煤体的破坏形态进行了分析,给出了孔周破碎区和裂隙区煤体结构的等效物理模型。进一步利用双重介质理论,将破碎区煤体结构等效为双重介质中的破碎单元,将裂隙区煤体结构等效为裂隙网络,进而分析孔周破碎区和裂隙区各两个渗透系统内的瓦斯流动规律。
(2)结合抽采钻孔孔周破碎区和裂隙区煤体的孔隙、裂隙结构特点,自主设计孔隙煤体“侧限压缩”渗透试验系统,分析有效应力对孔隙结构煤体渗流状态的作用机制;同时,利用裂隙煤体三轴渗透试验平台,利用KC方程的计算原理,对不同产状裂隙结构试样的渗透参数进行了测定。最后,结合孔隙、裂隙结构煤体的渗透参数特征,掌握了瓦斯抽采钻孔孔周破碎区和裂隙区结构的渗透基本特征。
(3)通过对抽采钻孔孔周破碎和裂隙结构煤体的渗透参数展开系统分析,依据双重介质系统中的双孔隙率和双渗透率介质渗流基本原理,给出孔周煤体破碎单元和裂隙网络各自的渗透率和孔隙率计算表达式,提出基于双重介质模型的孔周煤体渗透率计算新方法,进而建立瓦斯抽采钻孔孔周煤体的“双孔-双渗”数学模型,即认为孔周破碎区和裂隙区煤体存在两个孔隙率、两个渗透率。
(4)利用双重介质理论对孔周煤体破碎单元和裂隙网络渗透特征参数进行推导,表明抽采钻孔孔周破碎单元内的瓦斯运移形式遵循菲克扩散定律,裂隙网络内的瓦斯运移形式遵循达西定律。进一步开展钻孔孔周双重介质结构煤体瓦斯运移规律现场测定试验,利用“双孔-双渗”模型给出的煤体渗透率和透气性系数计算新方法,该模型可以更为精准的确定出预抽煤层瓦斯有效抽采半径。
通过以上研究,从结构上揭示了瓦斯抽采钻孔孔周煤体的双重介质特征,分析了抽采钻孔孔周破碎区和裂隙区煤体的渗透特性,构建了瓦斯抽采钻孔孔周破碎区和裂隙区煤体“双孔-双渗”理论数学模型,并利用该模型给出了大佛寺煤矿40103工作面煤层瓦斯抽采钻孔的合理布孔参数优化计算方法,这对于煤层瓦斯预抽钻孔的设计提供了重要的理论依据,具有重要的现实意义。
﹀
|
论文外文摘要: |
︿
Borehole gas pre-pumping is an important tool for gas management in high gas mines. The stress concentration in the borehole can easily lead to the destruction of the coal structure around the borehole, with the borehole showing a circular "three-zone" damage pattern (fracture zone, crack zone, original rock zone). The structure of the fracture and crack zone of the extraction borehole is the main channel for the transport of gas from the perimeter of the borehole, and there is currently a lack of understanding of the structure of such pore and fracture combinations of coal bodies. The pore and crack network at this fine level is dense and the gas transport process in the peripore fracture and crack zone coal bodies is a mixture of Darcy seepage and Fick diffusion, and the permeation mechanism of the combined media structure coal bodies is unknown. Subsequently, the determination of the effective extraction radius of pre-sumping boreholes is mainly dependent on downhole testing and field experience, which cannot ensure the universality of the design of coal seam gas pre-sumping boreholes, and the design of gas pre-sumping boreholes lacks effective theoretical guidance. Therefore, a combination of theoretical derivation, indoor tests and field tests is used to analyse the physical equivalent structural characteristics of the fracture and crack zones around the perimeter of the borehole. The parameters of the permeability characteristics of the fracture unit and crack network coal bodies are determined, and a theoretical mathematical model of the dual-media permeability of the perimeter coal body of the extraction borehole is established. The zonal permeability mechanism of the coal body around the extraction borehole is investigated. The main research works are as follows.
(1) Aiming at the convergence and flow of gas in the coal body around the perimeter of the gas extraction borehole, the damage pattern of the coal body around the borehole is analyzed, and the equivalent physical model of the coal body structure in the perimeter fracture zone and the fracture zone is given. Further, using the dual medium theory, the structure of coal body in the fracture zone is equated to the fracture unit in the dual medium, and the structure of crack coal body is equated to the crack network. Then, the gas flow law in each of the two permeable systems of perforated fracture zone and cracked zone is analyzed.
(2) Combining the characteristics of pore and cracked structure of the coal body in the perimeter fracture zone and cracked zone of the extraction borehole. We designed the "lateral limit compression" permeability test system for the pore body, and analyzed the mechanism of the effective stress on the permeability of the pore structure coal body. At the same time, the permeability parameters of different cracked structure specimens were measured by using the triaxial permeability test platform of cracked coal body and the calculation principle of KC equation. Finally, combined with the characteristics of permeability parameters of pore and crack structure coal bodies, the basic characteristics of permeability of peripore fracture zone and cracked zone structures of gas extraction boreholes were mastered.
(3) A systematic analysis of the permeability parameters of the peripore fracture and crack structured coal bodies in the extraction borehole is carried out. Based on the basic principles of dual porosity and dual permeability media percolation in the dual media system, expressions for calculating the permeability and porosity of the perforated coal body fracture unit and crack network are given. The new method of calculating permeability of perforated coal body based on the dual media model is proposed, and then the "dual porosity - dual permeability" mathematical model of perforated coal body in gas extraction boreholes is established. It is concluded that there are two porosities and two permeabilities in the peripore fracture zone and crack zone of the coal body.
(4) The dual media theory was used to derive the parameters of permeability characteristics for the perimeter fracture unit and the crack network, showing that the form of gas transport in the perimeter fracture unit of the extraction borehole follows Fick's law of diffusion and the form of gas transport in the crack network follows Darcy's law. Further field tests on the gas transport pattern of coal bodies with dual media structure around the perimeter of the borehole were carried out, and a new method for calculating the permeability and permeability coefficients of coal bodies was developed using the " dual porosity - dual permeability" model, which can more accurately determine the effective extraction radius of gas from pre-pumped coal seams.
Through the above research, the dual media characteristics of the coal body around the perimeter of the gas extraction borehole are structurally revealed. The permeability characteristics of the coal body in the fracture zone and the crack zone around the extraction borehole were analysed, and a theoretical mathematical model of " dual porosity - dual permeability " of the coal body in the fracture zone and the crack zone around the gas extraction borehole was constructed. The model was also used to give a method for optimising the reasonable layout parameters of the coal seam gas extraction boreholes at 40103 working face of Dafosi Coal Mine. This provides an important theoretical basis for the design of coal seam gas pre-sumping boreholes. It has important practical significance.
﹀
|
参考文献: |
︿
[1] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(3): 716-725. [2] 程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报, 2017, 42(6): 1466-1474. [3] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J/OL]. 煤炭学报, 2022, 21(4): 1-15. [4] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. [5] 林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J].煤炭学报, 2022, 47(3): 1220-1234. [6] 翟成, 李全贵, 孙臣, 等. 松软煤层水力压裂钻孔失稳分析及固化成孔方法[J]. 煤炭学报, 2012, 37(9): 1431-1436. [7] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭, 2021, 47(6): 1-6. [8] 韩颖, 张飞燕, 杨志龙. 煤层钻孔孔壁稳定性分析[J]. 中国安全科学学报, 2014, 24(6): 80-85. [9] 吴金刚, 毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展[J]. 煤矿安全, 2021, 52(7): 162-169. [10] 张天军, 庞明坤, 彭文清, 等. 不同产状裂隙煤样三轴承压下非Darcy渗流特性[J].煤炭学报, 2019, 44(1): 246-253. [11] 张吉雄, 张强, 巨峰, 等. 深部煤炭资源采选充绿色化开采理论与技术[J]. 煤炭学报, 2018, 43(2): 377-389. [12] 魏杰. 钻孔煤壁变形与渗流规律及钻孔参数优化研究[D]. 太原理工大学, 2018. [13] Pang M., Zhang T., Gao L., et al. Investigating the effects of effective stress on pore-dependent permeability measurements of crushed coal [J]. PLoS ONE, 2021, 16(12). [14] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990, 15(1): 15-24. [15] 张宏学, 刘卫群. 非平衡解吸状态下页岩气储层渗透率演化机制[J]. 岩土力学, 2021, 42(10): 9-16. [16] 周福宝, 刘春, 夏同强, 等. 煤矿瓦斯智能抽采理论与调控策略[J]. 煤炭学报, 2019, 44(8): 2377-2387. [17] Yan M., Zhou M., Li S., et al. Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method[J]. Energy, 2021, 230. [18] 尹光志, 鲁俊, 张东明, 等. 真三轴应力条件下钻孔围岩塑性区及增透半径研究[J]. 岩土力学, 2019, 40(S1): 1-10. [19] 程远平, 刘洪永, 郭品坤, 等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J].煤炭学报, 2014, 39(8): 1650-1658. [20] 姜穗坤. 解放层煤与瓦斯同采技术研讨[J]. 2021(6): 51-59. [21] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014, 39(8): 1455-1462. [22] 孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2006. [23] 周世宁, 孙辑正. 煤层瓦斯流动理论及其应用[J]. 煤炭学报, 1965(1): 24-37. [24] 郭勇义, 周世宁. 煤层瓦斯一维流场流动规律的完全解[J]. 中国矿业学院学报, 1984(2): 22-31. [25] 谭学术, 袁静. 矿井煤层真实瓦斯渗流方程的研究[J]. 重庆建筑工程学院学报, 1986(1): 106-112. [26] 魏晓林. 有钻孔煤层瓦斯流动方程及其应用[J]. 煤炭学报, 1988(1): 85-96. [27] 余楚新, 鲜学福, 谭学术. 煤层瓦斯流动理论及渗流控制方程的研究[J]. 重庆大学学报(自然科学版), 1989(5): 1-10. [28] 孙培德. 煤层瓦斯流动方程补正[J]. 煤田地质与勘探, 1993(5): 34-35. [29] Phuong N., Dutrey A., Diep P., et al. GG Tauri A: Gas properties and dynamics from the cavity to the outer disk [J]. Astronomy and Astrophysics, 2020, 635. [30] 崔溦, 王利新, 江志安, 等. 基于修正立方定律的岩体粗糙裂隙网络注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 9-18. [31] 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003(3): 74-79. [32] 宋晓晨, 徐卫亚. 裂隙岩体渗流概念模型研究[J]. 岩土力学, 2004(2): 226-232. [33] Barrer R. Diffusion In and Through Solids [M]. 1951. [34] Ruckenstein E., Vaidyanathan A., Youngquist G. Sorption by solids with bidisperse pore structures[J]. Chemical Engineering Science, 1971, 26(9): 1305-1318. [35] Hao M., Wei C., Qiao Z. Effect of internal moisture on CH4 adsorption and diffusion of coal: A molecular simulation study[J]. Chemical Physics Letters, 2021, 783: 139086. [36] 刘彦伟. 煤粒瓦斯放散规律,机理与动力学模型研究[D]. 河南理工大学, 2011. [37] Li Z., Liu D.,Cai Y., et al. Investigation of methane diffusion in low-rank coals by a multiporous diffusion model[J]. Journal of Natural Gas Science & Engineering, 2016. [38] Brhane K., Qamar S. Two-dimensional general rate model for non-isothermal liquid chromatography considering finite rates of adsorption–desorption kinetics[J]. Journal of Liquid Chromatography & Related Technologies, 2020, 43(7-8): 1-20. [39] Spanakos D., Rigby S. Evaluation of impact of surface diffusion on methane recovery via carbon dioxide injection in shale reservoirs[J]. Fuel, 2022, 307: 121928. [40] 李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3): 633-643. [41] 林晨, 贾天让, 周市伟, 等. 颗粒煤甲烷吸附过程扩散特征[J]. 煤田地质与勘探, 2018, 46(4): 44-49. [42] Wei Z., Cheng Y., Jiang H., et al. Modeling and experiments for transient diffusion coefficients in the desorption of methane through coal powders[J]. International Journal of Heat and Mass Transfer, 2017, 110(7): 845-854. [43] Wang G., Ren T., Qi Q., et al. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution[J]. Fuel, 2017, 196(5): 47-58. [44] Liu T., Lin B. Time-dependent dynamic diffusion processes in coal: Model development and analysis[J]. International Journal of Heat and Mass Transfer, 2019, 134(5): 1-9. [45] Keshavarz A., Sakurovs R., Grigore M., et al. Effect of maceral composition and coal rank on gas diffusion in Australian coals[J]. International Journal of Coal Geology, 2017, 173: 65-75. [46] Kiani A., Sakurovs R., Grigore M., et al. The Use of Infrared Spectroscopy to Determine Methane Emission Rates from Coals at Atmospheric Pressures[J]. Energy & fuels, 2019, 33(1): 238-247. [47] 魏建平, 王洪磊, 王登科, 等. 考虑渗流-扩散的煤层瓦斯流动修正模型[J]. 中国矿业大学学报, 2016, 45(5): 873-878. [48] 石朝龙, 姜旭, 寇园园, 等. 页岩气渗流理论模型研究现状与展望[J]. 石油化工应用, 2021, 40(8): 10-16. [49] Saghafi, C. Jeger, C. Tauziede, et al. A new computer simulation of in seam gas low and its application to gas emission prediction and gas drainage [C]. Proceedings of the 22ndInternational Conference of Safety in Mines Research Institutes. Beijing: China Coal IndustryPublishing House, 1987: 147-160. [50] 黄耀光. 深部破裂围岩锚注浆液渗流扩散机理研究[D]. 中国矿业大学, 2015. [51] L.N. Germanovich. Deformation of Nature Coals. Soviet Mining Science, 1983, (5): 377-381. [52] 王佑安, 朴春杰. 用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J]. 煤矿安全, 1981(11): 8-13. [53] [ 杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986(3): 87-94. [54] 聂百胜, 何学秋, 王恩元. 瓦斯气体在煤层中的扩散机理及模式[J]. 中国安全科学学报, 20(6): 27-31. [55] 郭勇义, 吴世跃, 王跃明, 等. 煤粒瓦斯扩散及扩散系数测定方法的研究[J]. 山西矿业学院学报, 1997(1): 17-21. [56] [ 吴世跃, 郭勇义. 煤粒瓦斯扩散规律与突出预测指标的研究[J]. 太原理工大学学报, 1998(2): 3-5. [57] 孙培德. 煤层瓦斯流场流动规律的研究[J]. 煤炭学报, 1987(4): 74-82. [58] Bieniawski Z. T. In situ strength and deformation characteristics of coal [J]. Engineering Geology, 1968, 2(5): 325-340. [59] Vandermer J. N. A laboratory investigation into the effect of specimen size on the strength of coal samples from different areas [J]. Journal-south african institute of mining and metallurgy, 2003, 103(5): 273-280. [60] Medhurst T. P., Brown E. T. Large scale laboratory testing of coal; proceedings of the 7th Australia New Zealand Conference on Geomechanics [C]. Geomechanics in a Changing World: Conference Proceedings, 1996. [61] 张天军, 景晨, 张磊, 等. 含孔试样孔周破坏的应变局部化特征[J]. 煤炭学报, 2020, 45(12): 4087-4094. [62] 张天军, 庞明坤, 蒋兴科, 等. 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524. [63] Szwilski A. B. Relation between the structural and physical properties of coal [J]. Mining Science and Technology, 1985, 2(3): 181-189. [64] Mark C., Barton T. M. Pillar design and coal strength; proceedings of the proceedings new technology for ground control in retreat mining pittsburgh [C]. NIOSH Publication, 1997. [65] Medhurst T. P., Brown E. T. A study of the mechanical behaviour of coal for pillar design [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1087-1105. [66] Ratten V., Pellegrini M. M., Manesh M. F. et al. Trends and changes in Thunderbird International Business Review journal: A bibliometric review [J]. Thunderbird International Business Review, 2020. [67] Shi J. Q., Durucan S., Shimada S. How gas adsorption and swelling affects permeability of coal: A new modelling approach for analysing laboratory test data [J]. International Journal of Coal Geology, 2014, 128-129. [68] 林柏泉, 周世宁. 煤样瓦斯渗透率的实验研究[J]. 中国矿业学院学报, 1987(1): 24-31. [69] Terzaghi K. V. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen [J]. Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse II, 1923, 142(3-4): 125-138. [70] Biot M. A. General theory of three-dimensional consolidation [J]. Journal of applied physics, 1941, 12(2): 155-164. [71] Wu J., Zhang G. Research on Development Characteristics of Micro-Fractures in a Soft Coal Seam Based on the Water-Injection Effect [J]. 2020. [72] 刘忠锋, 康天合, 鲁伟, 等.煤层注水对煤体力学特性影响的试验[J]. 煤炭科学技术, 2010, 38(1):17-19. [73] 高霞, 刘文新, 高橙, 等. 含瓦斯水合物煤体强度特性三轴试验研究[J]. 煤炭学报, 2015, 40(12): 2829-2835. [74] 蒋一峰. 受载煤体-瓦斯-水耦合渗流特性研究[D]. 中国矿业大学(北京), 2018. [75] V. Vishal, P. Geng. An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission [J]. Journal of Natural Gas Science & Engineering, 2015. [76] 周志芳, 王哲, 李雅冰, 等. 基于钻孔高压压水试验非线性流模拟计算错动带渗透参数[J]. 工程地质学报, 2021, 29(1): 197-204. [77] 包孟碟, 朱俊高, 吴二鲁, 等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J].岩土工程学报, 2020, 42(8): 1571-1576. [78] 曹志翔, 王媛, 赵素华, 等. 粗粒土渗透系数计算模型及试验研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3701-3708. [79] 孙光中, 郭兵兵, 王公忠, 等. 瓦斯压力对两种煤样渗流特性影响的试验研究[J]. 煤炭工程, 2016, 48(8):85-88. [80] 芈书贞, 马冬梅. 库水位骤降时边坡渗透稳定的非饱和渗透参数敏感性分析[J]. 水电能源科学, 2018, 36(9): 134-137. [81] 吴疆宇, 冯梅梅, 陈占清, 等. 溶蚀作用对破碎泥岩渗透特性的影响[J]. 哈尔滨工业大学学报, 2019, 51(2): 117-125. [82] Pan Z. J., Connell L. D., Camilleri M. Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery [J]. International Journal of Coal Geology, 2010, 82(3-4): 252-261. [83] Mazumder S., Scott M., Jiang J. Permeability increase in Bowen Basin coal as a result of matrix shrinkage during primary depletion [J]. International Journal of Coal Geology, 2012, 96 -97: 109-119. [84] [ Seidle J., Huitt L. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]. Proceedings of the International meeting on petroleum Engineering, 1995. [85] Zhang Y., Maxim L., Ahmed A. et al. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption [J]. Fuel, 2018, 218: 23-32. [86] 马恒, 王晓琪, 齐消寒, 等. 松散破碎岩石中气体渗流影响因素实验研究[J]. 中国安全生产科学技术, 2019, 15(8): 26-32. [87] Robertson E. P., Christiansen R. L. A Permeability Model for Coal and Other Fractured Sorptive-Elastic Media [J]. Spe Journal, 2008, 13(3): 314-324. [88] 刘泉声, 崔先泽, 张程远. 基于变孔隙率的多孔介质中悬浮颗粒沉积渗透率衰减模型研究[J]. 岩石力学与工程学报, 2016, 35(S1): 3308-3314. [89] 林柏泉, 王瑞, 乔时和. 高压气液两相射流多级脉动破煤岩特性及致裂机理[J]. 煤炭学报, 2018, 43(1): 124-130. [90] 李滔, 李闽, 荆雪琪, 等. 孔隙尺度各向异性与孔隙分布非均质性对多孔介质渗透率的影响机理[J]. 石油勘探与开发, 2019, 46(3): 569-579. [91] 魏建平, 秦恒洁, 王登科, 等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报, 2015, 40(7): 1555-1561. [92] 冯增朝, 赵阳升, 文再明. 煤岩体孔隙裂隙双重介质逾渗机理研究[J]. 岩石力学与工程学报, 2005(2): 236-240. [93] Pang Y., Wang G., Ding Z. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments [J]. International Journal of Coal ence & Technology, 2014, 1(4): 428-433. [94] 熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 998-1006. [95] 秦跃平, 刘鹏, 刘伟, 等. 双重介质煤体钻孔瓦斯双渗流模型及数值解算[J]. 中国矿业大学学报, 2016, 45(6): 1111-1117. [96] Durucan S., Ahsanb M., Shia J. Matrix shrinkage and swelling characteristics of European coals [J]. Energy Procedia, 2009(1): 3055-3062. [97] Seidle J., Huitt L. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]. Proceedings of the International Meeting on Petroleum Engineering, 1995. [98] Mazumder S., Scott M., Jiang J. Permeability increase in Bowen Basin coal as a result of matrix shrinkage during primary depletion [J]. International Journal of Coal Geology, 2012, 96 -97: 109-119. [99] Corey A., Brooks R. Drainage Characteristics of Soils1[J]. Soil Science Society of America Journal, 1975. [100] 张东明, 郑彬彬, 张先萌, 等. 含瓦斯砂岩卸围压变形特征与渗透规律试验研究[J]. 岩土力学, 2017, 38(12): 10-17. [101] 荆俊杰, 梁卫国, 张倍宁, 等. 含水率对煤层瓦斯渗流特性影响的试验研究[J]. 太原理工大学学报, 2016, 47(4): 450-454. [102] Robertson E., Christiansen R. A Permeability Model for Coal and Other Fractured Sorptive-Elastic Media [J]. SPE Journal, 2008, 13(3): 314-324. [103] Warren J., Root P. The behavior of naturally fractured reservoirs [M]. SPE Journal, 1963. [104] Zhang Y., Maxim L., Ahmed A., et al. Nanoscale rock mechanical property changes in heterogeneous coal after water adsorption [J]. Fuel, 2018, 218:23-32. [105] Khristianovich S. Fundamentals of filtration theory [J]. Journal of Mining Science, 1991, 27(1): 1-15. [106] Siemek J., Nagy S. The early time condensation in the near well zone during non-stationary and non-isothermal flow of gas condensate sysem [J]. Instytut Mechaniki Górotworu Pan, 2001. [107] V. Vishal, P. Geng. An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission [J]. Journal of Natural Gas Science & Engineering, 2015. [108] 蒋一峰. 受载煤体-瓦斯-水耦合渗流特性研究[D]. 中国矿业大学(北京), 2018. [109] 尚宏波, 靳德武, 张天军, 等. 三轴应力作用下破碎煤体渗透特性演化规律[J]. 煤炭学报, 2019, 44(4): 1066-1075. [110] 高霞, 孟伟, 张保勇. 常规三轴条件下含瓦斯水合物煤体的强度特性[J]. 黑龙江科技大学学报, 2020, 30(6): 7-14. [111] Kemeny J., Cook N. Effective moduli, non-linear deformation and strength of a cracked elastic solid[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 2015, 23(2): 107-118. [112] Wu J., Zhang G. Research on development characteristics of Micro-Fractures in a soft coal seam based on the water-injection effect[J]. 2020. [113] Santos J. General Theory of Three-Dimensional Consolidation[J]. Esaim Mathematical Modelling & Numerical Analysis, 1986, 20(1): 50-49. [114] 高霞, 刘文新, 高橙, 等. 含瓦斯水合物煤体强度特性三轴试验研究[J]. 煤炭学报, 2015, 40(12): 2829-2835. [115] 刘耀儒, 杨强, 黄岩松, 等. 基于双重孔隙介质模型的渗流-应力耦合并行数值分析[J].岩石力学与工程学报, 2007(4): 705-711. [116] 张玉, 郭豪, 陈铁林, 等. 孔隙介质水泥浆液渗透注浆有效扩散距离试验研究[J]. 中南大学学报(自然科学版), 2019, 50(10): 2536-2551. [117] 曹树刚, 郭平, 李勇白, 等. 瓦斯压力对原煤渗透特性的影响[J]. 煤炭学报, 2010, 35(4): 595-599. [118] Y. Li, D. Tang, X. Hao, et al. Experimental research on coal permeability: The roles of effective stress and gas slippage [J]. Journal of Natural Gas Science and Engineering, 2014. [119] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016, 45(3): 433-439. [120] 李俊乾, 刘大锰, 姚艳斌, 等. 气体滑脱及有效应力对煤岩气相渗透率的控制作用[J].天然气地球科学, 2013, 24(5): 1074-1078. [121] Wang D., Wang R., Zhang J. Dynamic brake characteristics of disc brake during emergency braking of the kilometer deep coal mine hoist [J]. Advances in Mechanical Engineering, 2020, 12(5):168781402091809. [122] 魏建平, 姚邦华, 刘勇, 等. 裂隙煤体注浆浆液扩散规律及变质量渗流模型研究[J]. 煤炭学报, 2020, 45(1): 204-212. [123] J. 贝尔著. 多孔介质流体动力学[M]. 北京: 中国建筑工业出版社, 1984. [124] Zhang J., Zhang B., Xu S., et al. Interpretation of Gas/Water relative permeability of coal using the hybrid Bayesian-Assisted history matching: New Insights[J]. Energies, 2021, 14. [125] Kemeny J., Cook N. Lawrence Berkeley Labrary, CA (USA), 1986. [126] Sammis C., Ashby M. The failure of brittle porous solids under compressive stress states [J]. Acta Metallurgica, 1986, 34(3): 511-526. [127] Martin C. D. The strength of massive Lac du Bonnet granite around underground openings [D]. University of Manitoba Manitoba, 1993. [128] 赵颖. 各向异性双重孔隙介质的应力与油水两相渗流耦合理论模型[J]. 工程力学, 2012, 29(2): 222-229. [129] 苏玉亮, 鲁明晶, 李萌, 等. 页岩油藏多重孔隙介质耦合流动数值模拟[J]. 石油与天然气地质, 2019, 40(3): 9-14. [130] Ratten V., Pellegrini M. M., Manesh M. F. et al. Trends and changes in Thunderbird International Business Review journal: A bibliometric review [J]. Thunderbird International Business Review, 2020. [131] Medhurst T., Brown E. A study of the mechanical behaviour of coal for pillar design [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1087-1105. [132] Biot M. A. General theory of three-dimensional consolidation [J]. Journal of applied physics, 1941, 12(2): 155-164. [133] Terzaghi K. V. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen [J]. Akad Wissensch Wien Sitzungsber Mathnaturwissensch Klasse II, 1923, 142(3-4): 125-138. [134] Wang S., Elsworth D., Liu J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content [J]. International Journal of Coal Geology, 2011, 87(1): 13-25. [135] Yan T., Yao Y., Liu D., et al. Evaluation of the coal reservoir permeability using well logging data and its application in the Weibei coalbed methane field, southeast Ordos basin, China [J]. Arabian Journal of Geosciences, 2015. [136] Zhao Y. New advances block-fractured medium rock fluid mechanics [A]. Mining and Petroleum Engineering, 1999. [137] Miao Y., Li X., Zhou Y., et al. A dynamic predictive permeability model in coal reservoirs: Effects of shrinkage behavior caused by water desorption [J]. Journal of Petroleum Science and Engineering, 2018, 168. [138] Jasinge D., Ranjith P., Choi S. Effects of effective stress changes on permeability of latrobe valley brown coal[J]. Fuel, 2011, 90(3):1292-1300. [139] 李尧, 王伟, 王如宾, 等. 考虑渗压的二长花岗岩流变损伤本构模型研究[J]. 河北工程大学学报(自然科学版), 2020, 37(1): 30-34. [140] Zhang K., Meng Z., Liu S. Comparisons of methane Adsorption/Desorption, Diffusion behaviors on intact coals and deformed coals: based on experimental analysis and isosteric heat of adsorption[J]. Energy & Fuels, 2021, 35(7). [141] 阙云, 熊汉, 刘慧芬, 等. 基于非饱和大孔隙流双重介质模型的浸水边坡水力响应数值模拟[J]. 工程科学与技术, 2020, 52(6): 102-110. [142] Geng Y., Tang D., Xu H., et al. Experimental study on permeability stress sensitivity of reconstituted granular coal with different lithotypes [J]. Fuel, 2017, 202: 12-22. [143] 靖洪文, 孟庆彬, 朱俊福, 等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报, 2020, 37(3): 429-442. [144] 侯公羽, 梁金平, 李小瑞. 常规条件下巷道支护设计的原理与方法研究[J/OL]. 岩石力学与工程学报2021(12): 1-22. [145] 夏泊洢. 岩石各向异性对井周应力分布及破裂压力影响[J]. 中国安全科学学报, 2018, 28(7): 129-134. [146] 夏泊洢. 岩石各向异性对井周应力分布及破裂压力影响[J]. 中国安全科学学报, 2018, 28(7): 129-134. [147] 张天军, 纪翔, 张磊, 等. 瓦斯抽采钻孔孔周裂隙演化及等效裂纹宽度试验研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3625-3633. [148] 张天军, 张磊, 李树刚, 等. 瓦斯抽采钻孔孔周裂纹扩展规律[J]. 辽宁工程技术大学学报(自然科学版), 2018, 37(3): 499-507. [149] 陈占清, 郁邦永. 采动岩体渗流力学研究进展[J]. 西南石油大学学报(自然科学版), 2015, 37(3): 69-76. [150] 黄先伍, 唐平, 缪协兴, 等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学, 2005(9): 1385-1388. [151] 陈占清, 王路珍, 孔海陵, 等. 一种计算变质量破碎岩体渗透性参量的方法[J]. 应用力学学报, 2014, 31(6): 927-932. [152] 刘卫群, 缪协兴, 陈占清. 破碎岩石渗透性的试验测定方法[J]. 实验力学, 2003(1): 56-61. [153] 陈占清, 缪协兴, 刘卫群. 采动围岩中参变渗流系统的稳定性分析[J]. 中南大学学报(自然科学版), 2004(1): 129-132. [154] 郁邦永, 陈占清, 吴疆宇, 等. 饱和级配破碎泥岩压实与粒度分布分形特征试验研究[J]. 岩土力学, 2016, 37(7): 1887-1894. [155] 郁邦永, 潘书才, 魏建军, 等. 承压饱和破碎岩石颗粒破碎及渗透率演化特征研究[J]. 采矿与安全工程学报, 2020, 37(3): 632-638. [156] 冯梅梅, 吴疆宇, 陈占清, 等. 连续级配饱和破碎岩石压实特性试验研究[J]. 煤炭学报, 2016, 41(9): 2195-2202. [157] 朱百里, 沈珠江等. 计算土力学[M]. 上海: 上海科技大学出版社, 1990. [158] 孔祥安, 江晓禹, 金学松. 固体接触力学[M]. 北京: 中国铁道出版社, 1999. [159] 陈占清, 李顺才, 浦海. 采动岩体蠕变与渗流耦合动力学[M]. 北京: 科学出版社, 2010. [160] 黄松元. 散体力学[M]. 北京: 机械工业出版社, 1993. [161] 张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安科技大学, 2019. [162] 高存法, 岳伯谦. 无限板内椭圆孔周的应力分析[J]. 工程力学, 1994(4): 78-82. [163] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(3): 2-7. [164] 王振, 梁运培, 金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程学报, 2008, 25(4): 444-448. [165] 郑雨天. 井巷和钻孔周围三维应力场的简化模式[J]. 煤炭学报, 1982(4): 74-80. [166] 蒋承林. 煤壁突出孔洞的形成机理研究[J]. 岩石力学与工程学报, 2000(2): 225-228. [167] 孙玉宁, 周鸿超, 周建荣, 等. 半煤岩软底巷道底鼓控制技术[J]. 采矿与安全工程学报, 2007(3): 340-344. [168] 葛修润, 侯明勋. 一种测定深部岩体地应力的新方法—钻孔局部壁面应力全解除法[J]. 岩石力学与工程学报, 2004(23): 3923-3927. [169] 冯增朝. 低渗透煤层瓦斯抽放理论与应用研究[D]. 太原理工大学, 2005. [170] 齐雅楠. 双重孔隙介质中垂直裂缝气井不稳态渗流研究[D]. 中国地质大学(北京), 2020. [171] 赵良杰. 岩溶裂隙-管道双重含水介质水流交换机理研究[D]. 中国地质大学(北京), 2019. [172] Barree R., Conway M. Reply to Discussion of "Beyond Beta Factors: A Complete Model for Darcy, Forchheimer, and Trans-Forchheimer Flow in Porous Media".J Pet Technol, 2005, 57 (8): 73-74. [173] Lai B., Miskimins J., Wu Y. Non-Darcy porous-media flow according to the barree and conway model: Laboratory and Numerical Modeling Studies. SPEJ, 2012, 17 (1):70-79. [174] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(5): 20-23. [175] 张东明, 齐消寒, 宋润权, 等. 采动裂隙煤岩体应力与瓦斯流动的耦合机理[J]. 煤炭学报, 2015, 40(4): 774-780. [176] 朱红光, 易成, 谢和平, 等. 基于立方定律的岩体裂隙非线性流动几何模型[J]. 煤炭学报, 2016, 41(4): 822-828. [177] 孟如真, 胡少华, 陈益峰, 等. 高渗压条件下基于非达西流的裂隙岩体渗透特性研究[J]. 岩石力学与工程学报, 2014,33(9): 1756-1764. [178] 王广西, 李丹, 赖万昌, 等. EDXRF法在煤成分分析中的应用[J]. 选煤技术, 2009(3): 50-78. [179] 李祥春, 高佳星, 张爽, 等. 基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征[J/OL]. 地球科学, 2021(12): 1-15. [180] 郭畅. 割缝煤体瓦斯-水两相作用机制及耦合渗流特性研究[D]. 中国矿业大学, 2019. [181] 刘清泉. 多重应力路径下双重孔隙煤体损伤扩容及渗透性演化机制与应用[D]. 中国矿业大学, 2015. [182] 贺立新. 高温后岩石孔隙-裂隙组合非线性渗流特性研究[D]. 中国矿业大学, 2019. [183] 李鑫. 准南高挥发分烟煤储层孔裂隙结构及其排采力学伤害机制[D]. 中国矿业大学, 2018. [184] Valliappan S., Zhang W. Numerical modelling of methane gas migration in dry coal seams[J]. International journal for numerical and analytical methods in geomechan ics, 1996, 20(8): 571-593. [185] Chen D., Pan Z., Liu J., et al. An improved relative permeability model for coal reservoirs[J]. International Journal of Coal Geology, 2013, 109-110: 45-57. [186] Chen D., Shi J., Durucan S, et al. Gas and water relative permeability in different coals: Model match and new insights[J]. International Journal of Coal Geology, 2014, 122: 37-49. [187] 赵阳升, 胡耀青. 孔隙瓦斯作用下煤体有效应力规律的实验研究[J]. 岩土工程学报, 1995(3): 26-31. [188] 姜瑞忠, 张福蕾 ,杨明, 等. 双重介质低渗透油藏水平井试井模型[J]. 特种油气藏, 2019, 26(3): 79-84. [189] 商克俭, 冯东梅, 叶礼友, 等. 裂缝-孔隙型双重介质气藏开发影响分析[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 107-114. [190] 孔庆利. 煤层气在双孔介质中解吸及渗流机理研究[D]. 东北石油大学, 2012. [191] 葛家理, 宁正福, 刘月田, 等. 现代油藏渗流力学原理[M]. 北京: 石油工业出版社, 2001. [192] Chen Z., Pan Z., Liu J., et al. Effect of the effective stress coefficient and sorption- induced strain on the evolution of coal permeability: Experimental observations[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1284-1293. [193] 刘清泉, 褚鹏, 黄文怡, 等. 瓦斯脱附扩散迟滞压力及双重孔隙煤体窜流函数[J/OL]. 煤炭学报2021(12): 1-15. [194] Lomizc G. M. Flow in fractured rocks[M]. Goscnergoizdat, Moscow, 1951. [195] Romm E. S. Flow charactcristics of fractured rocks[M]. Nedra, Moscow, 1966. [196] Wang M., Li X., Dai X. Thermal cvolution charactcristics of Triassic coal in Chuxiong Basinand its gcological signific ancec[J]. International Journal of Mining Scicnce and Technology, 2016, 26(5): 937-945. [197] Liu J., Elsworth D., Brady B. Linking stress-dependent cffective porosity and hydraulicconductivity ficlds to RMR[J]. International Journal of Rock Mechanics, 1999, 36: 581-596. [198] 帅官印, 张永波, 郑秀清, 等. 压裂层双重介质中煤层水渗流规律仿真试验研究[J]. 煤炭科学技术, 2019, 47(5): 145-150. [199] 孔祥言. 高等渗流力学[M]. 北京: 中国科学技术大学出版社, 2010. [200] 杨勇, 谢日彬, 闫正和, 等. 双重介质复合数值试井技术在裂缝性礁灰岩底水油藏中的应用[J]. 特种油气藏, 2020, 27(5): 100-105. [201] 李胜, 张浩浩, 范超军, 等. 煤层双重介质模型及瓦斯抽采合理布孔间距研究[J]. 安全与环境学报, 2018, 18(4): 6-15. [202] 秦跃平, 刘鹏, 刘伟, 等. 双重介质煤体钻孔瓦斯双渗流模型及数值解算[J]. 中国矿业大学学报, 2016, 45(6): 7-16. [203] 姜瑞忠, 原建伟, 崔永正, 等. 考虑岩石变形的页岩气藏双重介质数值模拟[J]. 油气地质与采收率, 2019, 26(4): 7-18.
﹀
|
中图分类号: |
TD712.6
|
开放日期: |
2022-06-23
|