- 无标题文档
查看论文信息

论文中文题名:

 红柳林井田浅埋煤层顶板含水层井下钻孔疏放水规律与参数优化研究    

姓名:

 孙泽楠    

学号:

 22209226084    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 矿井水害防治    

第一导师姓名:

 侯恩科    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-25    

论文答辩日期:

 2025-06-04    

论文外文题名:

 Research on Drainage Patterns and Parameter Optimization of Underground Boreholes in Shallow Coal Seam Roof Aquifers of Hongliulin Mine Field    

论文中文关键词:

 富水性分区 ; 含水层涌水量 ; 钻孔疏放水规律 ; 钻孔布设优化    

论文外文关键词:

 Water rich zoning ; Aquifer inflow ; Drilling and drainage rules ; Optimization of drilling layout    

论文中文摘要:

陕北浅埋煤层开采主要受顶板风化基岩含水层和烧变岩含水层水害威胁,顶板含水层探放水是预防顶板水害的常用方法,但钻孔布设和参数如何设计才能使疏放水效果最优是当前亟需研究解决的问题。本文以陕北侏罗纪煤田红柳林井田43104、15218、44211工作面风化基岩含水层和烧变岩含水层为研究对象,开展顶板含水层探放水钻孔疏放水规律与钻孔参数优化设计,对浅埋煤层开采顶板含水层探放水钻孔的参数优化设计具有重要理论和应用价值。,其研究结果可为红柳林煤矿井下探放水钻孔的高效率疏放提供指导依据。

对红柳林井田水文地质特征进行分析,并综合应用瞬变电磁法与富水性指数法,对43104、15218及44211工作面风化基岩含水层与烧变岩含水层进行富水性评价,并利用井下探放水初始涌水量数据验证评价结果后得:风化基岩含水层中,43104工作面主要以相对中–强富水性为主,15218工作面以相对弱–中等富水性为主,44211工作面以相对弱–中等富水性为主;烧变岩含水层富水性特征为:43104工作面以相对中–强富水性为主,15218工作面以相对弱–中等富水性为主。 

通过系统分析43104、15218、44211工作面相对强、中等、弱富水区内的探放水钻孔参数及疏放时间与涌水量的关系后得出以下规律:风化基岩含水层中,三种富水区内均是当倾角为30°~35°、孔深为80~100m时,涌水量达到最大;烧变岩含水层中,孔深>100m时最大涌水量对应倾角为56°,孔深<100m时最优倾角降至40°。相对强富水区内T18钻场在疏放过程中水量出现"骤减-反弹-再降",且多个钻场经过45天疏放后仍持续涌水,反映相对强富水区易受塌孔、堵孔扰动影响且具有持续补给特征。相对弱富水性区的钻场普遍在45天内完全疏放干净,反映相对弱富水区储水量有限的特点。

基于Feflow数值模拟软件构建43104工作面地下水系统数值模型,以钻孔倾角及长度为主要变量开展参数数值模拟。优化方案表明:风化基岩含水层中,相对强富水区内布设倾角30°、深入含水层25m的疏放水钻孔为最优参数;相对中等富水区内布设倾角30°、深入含水层40m的疏放水钻孔为最优参数;相对弱富水区内布设倾角30°、深入含水层23m的疏放水钻孔为最优参数。烧变岩含水层中,布设倾角45°、深入含水层25m的疏放水钻孔为相对中等富水区中的最优参数。

论文外文摘要:

The mining of shallow-buried coal seams in northern Shaanxi is mainly threatened by water hazards from the weathered bedrock aquifer in the roof and the burned rock aquifer. Water exploration and drainage from the roof aquifer is a common method to prevent roof water hazards. However, how to design the borehole layout and parameters to achieve the optimal water drainage effect is an urgent problem to be studied and solved. Taking the weathered bedrock aquifer and burned rock aquifer in the 43104、15218、44211mining face of Hongliulin mine field of the Jurassic coalfield in northern Shaanxi as the research objects, this paper studies the water drainage law and optimization method of exploration and drainage boreholes in the roof aquifer, which has important theoretical and application values for the layout and design of exploration and drainage boreholes in the roof aquifer of shallow-buried coal seam mining.

This study is based on the analysis of hydrogeological characteristics in the mining area. Transient electromagnetic method and water abundance index method are comprehensively applied to evaluate the water abundance of weathered bedrock aquifer and burned rock aquifer in mining faces 43104, 15218 and 44211. The initial water inflow data from underground water exploration and drainage are used to verify the evaluation results. The study shows that: the mining face 43104 is mainly of relatively medium-strong water abundance, the mining face 15218 is mainly of relatively weak-medium water abundance, and the mining face 44211 is mainly of relatively weak-medium water abundance. The water abundance characteristics of the burned rock aquifer are as follows: the mining face 43104 is mainly of relatively medium-strong water abundance, with local relatively weak water-rich areas; the mining face 15218 is mainly of relatively weak-medium water abundance, with local developed relatively strong water-rich areas.

Through the systematic analysis of the relationship between the parameters of water exploration and drainage boreholes, the drainage time and the water inflow in the three working faces (representing relatively strong, medium and weak water-rich areas respectively), the following laws are obtained: in the weathered bedrock aquifer, in the three types of water-rich areas, when the dip angle is 30°~35° and the hole depth is 80~100m, the water inflow reaches the maximum; in the burned rock aquifer, when the hole depth is >100m, the dip angle corresponding to the maximum water inflow is 56°, and when the hole depth is <100m, the optimal dip angle decreases to 40°. In the relatively strong water-rich area, the water volume in the T18 drilling field shows "sudden decrease-rebound-redecrease" during the drainage process, and multiple drilling fields continue to drain water after 45 days of drainage, reflecting that the relatively strong water-rich area is susceptible to the disturbance of hole collapse and blockage and has the characteristics of continuous recharge. The drilling fields in the relatively weak water-rich area are generally completely drained within 45 days, reflecting the characteristics of limited water storage in the relatively weak water-rich area.  

FEFLOW numerical modeling of mining face 43104's groundwater system, with borehole inclination and length as primary variables, yields optimized configurations: Weathered bedrock aquifers: 30° inclination with 25m aquifer penetration in high-abundance zones; 30° with 40m penetration in medium-abundance zones; 30° with 23m penetration in low-abundance zones Burnt rock aquifers: 45° inclination with 25m penetration in medium-abundance zones. This research establishes scientifically-grounded parameters for targeted drainage operations in geologically complex roof aquifers.

参考文献:

[1]谭世燕.编制水文地质图中岩层富水性的评价方法问题[J]. 水文地质工程地质,1991,(01):51-52.

[2]武强,黄晓玲,董东林,等. 评价煤层顶板涌(突)水条件的“三图-双预测法”[J]. 煤炭学报,2000,(01):62-67.

[3]潘启章,吴有信,于联盟,等.淮北煤田松散层电性特征及富水性评价[J]. 中国煤田地质,2005,(5):107-110+130.

[4]刘德民.潘谢矿区煤层顶板富水性评价研究[J]. 华北科技学院学报,2009,6(04):27-29+42.

[5]武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法-富水性指数法[J]. 煤炭学报,2011,36(7),1124-1128.

[6]黄欢,朱宏军.基于“富水性指数法”的煤层顶板含水层涌水危险性评价[J]. 煤矿安全,2020,51(2):192-196.

[7]曾一凡,武强,杜鑫,等.再论含水层富水性评价的“富水性指数法”[J].煤炭学报,2020,45(7):2423-2431.

[8]韩超,泮晓华,李国梁,等.基于GIS 多源信息集成的含水层富水性模糊层次分析法[J]. 水文地质工程地质,2012,39(4):19-25.

[9]武旭仁,魏久传,尹会永,等.基于模糊聚类的顶板砂岩富水性预测研究—以龙固井田为例[J]. 山东科技大学学报(自然科学版),2011,30(2):14-18.

[10]赵宝峰.基于含水层沉积和构造特征的富水性分区[J]. 中国煤炭地质,2015,27(04):30-34.

[11]代革联,杨韬,周英,等.神府矿区柠条塔井田直罗组地层富水性研究[J].安全与环境学报,2016,16(4):144-148.

[12]冯书顺,武强.基于AHP-变异系数法综合赋权的含水层富水性研究[J]. 煤炭工程,2016,48(S2):138-140.

[13]郭启琛,李文平,郭太刚.基于 FAHP-GRA 法的风积沙覆盖风化带潜水富水性评价[J].煤矿安全,2018,49(12):35-40.

[14]侯恩科,闫鑫,郑永飞,等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(06):942-949.

[15]张良良,石永奎,李俊勇.基于混合核函数支持向量机的顶板砂岩富水性研究[J]. 矿业安全与环保,2018,45(02):72-76.

[16]王苏健,冯洁,侯恩科,等.柠条塔井田砂岩细观孔隙结构类型及其对含水层富水性的影响[J]. 煤炭学报,2020,45(9):3236-3244.

[17]姚星,侯恩科,牛超,等.基于GIS的煤层顶板含水层富水性评价[J].中国煤炭地质,2021,33(03):20-24.

[18]薛建坤.基于分形理论的富水性指数法在含水层富水性评价中的应用[J]. 煤矿安全,2020,51(2):197-201.

[19]李盼盼,侯恩科,姬亚东.基于标准差修正主观权重的洛河组含水层富水性评价[J].能源与环保,2023,45(10):1003-0506.

[20]侯恩科,童仁剑,冯洁,等.烧变岩富水特征与采动水量损失预计[J].煤炭学报,2017,42(01):175-182.

[21]侯恩科,杨斯亮,文强,等.柠条塔井田南翼隐伏火烧区特征及富水性评价[J].煤矿安全,2022,53(11):191-199.

[22]Shlomo PN. On methods of determining Specific Yield[J]. Ground Water,1987,25(6):679-684.

[23]Mark M. Defining and managing sustainable yield[J]. Groundwater,2004,42(6):809-814.

[24]Emanuele R. Elisabetta Preziosi. The sustainable pumping rate concept:Lessons from a case Study in central Italy[J]. Ground water,2010,48(2):217-226.

[25]Kink SN, Burakhovich TK. A three-dimensional crustal geoelectric model of the Ukrainian Shield[J]. Izvestiy a physics of the solid earth,2007,43(4):284-289.

[26]Nico Goldscheider. Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb,Germany[J]. Hydrogeology Journal,2005, 13(4):555-564.

[27]Raiche A P,Gallagher R. Apparent resistivity and diffusion velocity[J]. Journal of Applied Geophysics,2000, 44:1628-1633.

[28]LIU Shiliang, LI Wenping. Zoning and management of phreatic water resource co-nservation impacted by underground coal mining: A cause study in arid and semiarid areas[J]. Journal of Cleaner Production, 2019, 224: 677-685.

[29]赵凯兴.红柳林矿井北二盘区3-1煤开采主要含水层工作面涌水量预测[D].西安科技大学,2023.

[30]雷方超.红柳林煤矿南一盘区5-2煤层综采工作面涌水量预测[D].西安科技大学,2023.

[31]施龙青,翟培合,魏久传,朱鲁,韩进,尹会永.三维高密度电法技术在岩层富水性探测中的应用[J].山东科技大学学报(自然科学版),2008,27(06):1-4.

[32]王厚柱,胡雄武,舒玉峰.煤层顶板岩层富水性探测技术应用[J].陕西煤炭,2010,29(02):70-72.

[33]孔德山,程久龙,朱若军,王玉和,姜国庆.利用矿井瞬变电磁法探测工作面顶板岩层含水性的研究[J].矿业安全与环保,2010,37(03):31-33+5.

[34]范涛,李文刚,王鹏,安绍鹏.瞬变电磁拟MT深度反演方法精细解释煤矿岩层富水性研究[J].煤炭学报,2013,38(S1):129-135.

[35]闫顺尚,王玲,董方营,刘晓,吕晓磊.基于电-磁法联合勘探的火烧区范围及富水性的预测[J].煤田地质与勘探,2022,50(02):132-139.

[36]陆大华,王琦.地震多属性反演预测煤层顶底板富水性[J].中国煤炭地质,2014,26(09):65-68.

[37]侯恩科,车晓阳,冯洁,等.榆神府矿区含水层富水特征及保水采煤途径[J].煤炭学报,2019,44(03):813-820.

[38]杨建,赵彩凤.基于工作面顶板疏放水的含水层水力联系研究[J].矿业安全与环保,2015,42(05):84-86.

[39]许光泉,葛晓光,赵宏海.桃园煤矿“四含”三维数值模型及疏放性研究[J].安徽理工大学学报(自然科学版),2006,26(04):17-23.

[40]J.Dupuit,Etudes.Theoriques et Pratiques sur le Mouvement des Eaux dans les Canaux de Couverts et Traversles Terrains Permeables[M]. Dunod,Paris,1863.

[41]CV Theis.The relation between the lowering of the piezometric surface and the rateand duration of discharge of a well using ground water storage[J].Trans Am Geophys Union 2:519-524.

[42]Zhan H B.Groundwater flow to a horizontal or slanted well in an unconfined aquifer[J].2002,38(7):13;

[43]N Samani,M Kompani-Zare,H Seyyedian.Flow to horizontal and slanted drains inanisotropic unconfined aquifers [J].Developments in Water Science,2004,55(1):427–440;

[44]范立民.神木矿区矿井疏降水工程及施工方法[J].水文地质工程地质,1994,(05):56-57.

[45]段中会,牛建国,崔帮军.神府矿区首采高产高效工作面疏降水方法[J].中国煤田地质,1996,8(02):31-33.

[46]王永申.补连塔煤矿2211工作面防治水措施[J].水力采煤与管道运输,2001,(02):10-14.

[47]吕国庆.小纪汗煤矿富水煤层超前疏降水防治水害实践[J]. 能源技术与管理,2013,38(05):87-89.

[48]齐跃明,李民族,许进鹏.复杂地质条件下的突水疏放试验及水文地质意义[J].采矿与安全工程学报,2016,33(01):140-145.

[49]方俊,张杰.定向长钻孔超前疏放顶板水技术在枣泉煤矿的应用[J].煤炭工程,2016,48(07):56-59.

[50]段中会.榆神府矿区煤矿水害及其防治研究[J].中国煤田地质,1998,10(增刊);60-61.

[51]虎维岳.地下水疏干井群优化设计的遗传算法[J].煤田地质与勘探,1999,27(02):36-38.

[52]徐玲,李彦周.开滦荆各庄矿9煤层顶板综合防治技术[J].淮南工业学院学报,2002,22(增刊):144-146.

[53]王文学,隋旺华.某矿第四系底部含水层降水井群优化布置[J].煤田地质与勘探,2011,39(02):30-33.

[54]史先志,严克礼.工作面顶板探放水钻孔效果评价[J].能源技术与管理,2007(06):80-81.

[55]王宏科,白有社,罗得把.煤矿探放水工程设计优化与实践[J].中国煤炭地质,2012,24(11):48-51.

[56]赵宝峰.灰色关联度在井下钻孔疏放水效果分析中的应用[J].辽宁工程技术大学学报(自然科学版),2013,32(02):289-292.

[57]马亚杰,冯玉,章之燕,等.煤层底板强含水层超前疏放水分析与应用[J].煤炭学报,2014,39(04):731-735.

[58]马亚杰,王东,孙海威.ANN采煤工作面最大涌水量预测与指标优化[J].辽宁工程技术大学学报(自然科学版),2013,32(02):869-873.

[59]赵宝峰.灰色关联度在井下钻孔疏放水效果分析中的应用[J].辽宁工程技术大学学报(自然科学版),2013,32(03):289-292.

[60]李洋,王文学,肖航,等.非承压含水层底部单孔疏放水渗流特征[J].煤田地质与勘探,2019,47(3):154-159.

[61]李悦.开滦东欢坨矿3085工作面涌水量数值模拟[D].唐山:华北理工大学,2020:56-71.

[62]赵春虎,董书宁,王皓,等.采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J].煤炭学报,2020,45(增1):405-414.

[63]刘基,靳德武,王皓.基于含水层-钻孔水量交换的疏放水钻孔涌水量计算及参数优化[J]. 煤炭学报,2021,46(9):2995-3005.

[64]陈实,董书宁,李竞生,等.煤矿工作面顶板倾斜钻孔疏放水井流计算方法[J]. 煤炭学报,2016,41(6):1517-1523.

中图分类号:

 TD745    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式