- 无标题文档
查看论文信息

题名:

 顺层双防钻孔密封段煤体裂隙演化及注浆抑制机制研究    

作者:

 纪翔    

学号:

 20120089013    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

导师姓名:

 张天军    

导师单位:

 西安科技大学    

提交日期:

 2024-06-18    

答辩日期:

 2024-05-26    

外文题名:

 Study on the mechanism of inhibiting crack evolution by grouting around the sealing section of double-prevention bedding boreholes    

关键词:

 瓦斯抽采 ; 双防钻孔 ; 密封段 ; 裂隙演化 ; 渗透特性 ; 注浆抑制    

外文关键词:

 Gas extraction ; Double-prevention boreholes ; Sealing section ; Crack evolution ; Permeability characteristics ; Grouting inhibition    

摘要:

顺层瓦斯抽采钻孔和防冲卸压钻孔(双防钻孔)的协同布置,是深部矿井防治高瓦斯与冲击倾向性复合灾害的重要措施。由于巷道与双防钻孔施工后的应力重新分布,在双防钻孔密封段处形成的复杂裂隙结构会成为气体渗流通道,这是造成瓦斯抽采浓度过低的主要原因,严重影响煤矿安全生产。因此,为研究顺层双防钻孔密封段煤体裂隙演化及注浆抑制机制,提高双防钻孔条件下的煤层瓦斯抽采效率,本文采用理论分析、实验室试验、数值模拟和现场工业性测试相结合的方法,建立了双防钻孔密封段煤体应力分布物理和力学模型,分析了双防钻孔密封段煤体裂隙演化规律,研究了注浆前后煤体渗透特征,揭示了顺层双防钻孔密封段煤体注浆抑制机制。主要研究工作如下:

(1) 根据顺层双防钻孔的布置结构和受力情况,分析双防钻孔密封段煤体结构分区的演化规律,建立双防钻孔孔周煤体结构物理模型。基于非均匀应力场条件,建立双防钻孔孔周力学模型,给出双孔结构下孔周煤体“三区”的应力、应变和位移的解析解。采用Schwarz交替法理论推导并建立下双防钻孔“双圆孔”应力模型,结合孔周“三区”特征给出了确定双防钻孔最优布置间距的理论方法,并通过工程实例进行求解,得到双防钻孔的最优间距为1.5m。

(2) 采用煤岩体变形破坏数字图像观测实验平台,开展了含双孔煤样变形破坏试验,分析了含孔煤样的力学特性和变形破坏特征,计算试样破坏过程的表面应变场、裂隙张开与错动情况、裂隙区域应变能密度等参数,定量化分析不同孔间距条件下双孔煤样的应变场演化特征和裂隙演化特征,探究不同应力-应变状态下钻孔变形与孔周煤体渗透通道的扩展规律。

(3) 综合考虑顺层双防钻孔密封段煤体应力分布特征和裂隙演化规律,分析了密封段煤体渗流通道分布特征及气体流动特征;开展了双防钻孔密封段孔隙-裂隙“双重孔径”组合煤样三轴渗透试验,分析了煤体渗透率变化规律,试验测得气体漏气量与密封段内煤体的渗透率呈正相关,当密封段煤体渗透率低于1.6×10-11m2时,空气漏气量小于0.3L/min,进而探究了煤体渗透率与裂隙漏气量的关系。

(4) 采用缓凝注浆材料,开展了裂隙-孔隙“双重孔径”组合煤样注浆-渗透试验,分析了不同注浆压力下煤体孔隙率、渗透率变化规律,注浆后煤体孔隙率下降91.7%~93.59%,渗透率下降99%左右。通过分析双防钻孔密封段煤体破坏和空气渗流过程,以及浆液固结对煤体渗透性的影响,揭示了双防钻孔密封段煤体注浆抑制机制。进一步开展双防钻孔注浆抑制现场考察试验,在陕西某矿1012012工作面,综合采用SF6示踪法和漏气衰减测试法,验证了缓凝注浆材料对双防钻孔密封段煤体渗透的抑制效果。

通过以上研究,从理论上构建了非均匀应力场条件下双防钻孔“双圆孔”应力模型,分析了双防钻孔变形和裂隙演化规律,研究了注浆前后煤体渗透特征,揭示了顺层双防钻孔密封段煤体注浆抑制机制。研究结果丰富了高瓦斯与冲击地压复合灾害矿井协同防治理论,对提高煤层瓦斯抽采效果提供了理论依据,具有重要的现实意义。

外文摘要:

The cooperative arrangement of gas extraction boreholes and pressure relief boreholes (double-prevention boreholes) is an important measure to control the compound disaster of high gas and outburst proneness in deep mines. Due to the stress redistribution after the construction of roadway and double-prevention boreholes, the complex crack structure formed around the sealing section of double-prevention boreholes becomes the channel for air seepage, which is the main reason for the low concentration of gas extraction, and seriously affects the safety production of coal mines. To study the mechanism of inhibiting crack evolution by grouting around the sealing section of double-prevention bedding boreholes, and to improve the efficiency of gas extraction under the condition of double-prevention bedding boreholes. The combination of theoretical analysis, laboratory experiments, numerical simulation, and on-site industrial tests is used to establish a physical and mechanical model of coal body stress distribution around the sealing section of double-prevention borehole. The crack evolution law of coal body is analyzed, the permeability characteristics of coal body before and after grouting are studied, and the grouting inhibition mechanism of coal body around the sealing section of double-prevention borehole is revealed. The main research works are as follows:

(1) Based on the structural arrangement and stress conditions of double-prevention bedding boreholes, the structure zones evolution law of the coal body in the sealing sections were analyzed, and a physical model of the coal body structure around the boreholes was established. Based on the conditions of non-uniform stress field, the mechanical model of double-prevention boreholes was established, and the analytical solutions of stress, strain, and displacement in the “three zones” around the boreholes were given. The Schwarz alternating method was used to derive and establish the “dual-circular borehole” mechanical model under double-prevention boreholes conditions. The theoretical method for determining the optimal spacing between double-prevention boreholes was proposed by combining with the characteristics of “three zones” around the boreholes, and the optimal spacing of the double-prevention boreholes was obtained as 1.5m by solving the engineering examples.

(2) The digital image observation experimental platform for deformation and failure of coal and rock bodies was used to carry out the deformation and failure test of coal samples with double boreholes. The mechanical and deformation failure characteristics of samples are analyzed, and the parameters of surface strain field, crack opening and shearing, and strain energy density in the crack area were calculated of the samples during the failure. The evolution characteristics of the strain field and the crack of the coal samples with double boreholes under the different borehole spacing were quantitatively analyzed, and the propagation laws of the borehole deformation and the permeable channels of the coal body around the double-boreholes under different stress-strain states were explored.

(3) Considering the stress distribution characteristics and crack evolution law of the coal body in the sealing section of double-prevention bedding boreholes, the distribution characteristics of the leakage channels and air flow characteristics of the coal body in the sealing section were analyzed. The triaxial permeability test of coal samples with pores-crack “double pore size” combination in the sealing section of double-prevention boreholes was carried out to analyze the change law of coal permeability. The air leakage is positively correlated with the permeability of coal in the sealing section, when the permeability of coal in the sealing section is less than 1.6×10-11m2, the air leakage is less than 0.3L/min, and then the relationship between the coal permeability and crack leakage was explored.

(4) The retardation grouting material was used to carry out the grouting-permeability test of coal samples with pores-crack “double pore size” combination, and the change law of coal porosity and permeability under different grouting pressures was analyzed. After grouting, the porosity of coal decreased by 91.7%-93.59%, and the permeability decreased by about 99%. By analyzing the process of coal body failure and air seepage in the sealing section of double-prevention borehole, and the effect of slurry consolidation on the permeability of coal body, the mechanism of grouting inhibition of coal body in the sealing section of double-prevention borehole was revealed. In the 1012012 working face of a mine in Shaanxi Province, the field investigation test of grouting inhibition of double-prevention boreholes was further carried out. The SF6 tracer method and the air leakage attenuation test method were comprehensively used to verify the inhibition effect of retardation grouting material on coal permeability in the sealing section of double-prevention boreholes.

Through the above research, the “dual-circular borehole” mechanical model of double-prevention boreholes under conditions of non-uniform stress field was theoretically constructed, the deformation and crack evolution law of double-prevention boreholes were analyzed. The permeability characteristics before and after grouting were studied, and the grouting inhibition mechanisms of coal body in the sealing sections of double-prevention boreholes. The research results enrich the theory of coordinated prevention and control of high gas and rock burst compound disaster mines, and provide a theoretical basis for improving the effect of coal seam gas extraction, which has important practical significance.

参考文献:

[1] 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊, 2023, 38(1): 11-22.

[2] 李树刚, 张静非, 林海飞, 等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术, 2024, 52(1): 138-153.

[3] 中国煤炭工业协会. 2023煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2024.

[4] 袁亮, 王恩元, 马衍坤, 等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报, 2023, 48(5): 1825-1845.

[5] 潘一山, 宋义敏, 刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报, 2023, 42(9): 2081-2095.

[6] 王国法, 潘一山, 赵善坤, 等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术, 2024, 52(1): 1-14.

[7] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报, 2016, 41(1): 105-112.

[8] 齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018, 43(7): 1801-1810.

[9] 潘俊锋, 刘少虹, 马文涛, 等. 陕西煤矿冲击地压发生规律与分类防治[J]. 煤炭科学技术, 2024, 52(1): 95-105.

[10] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(3): 716-725.

[11] 国家矿山安全监察局. 冲击地压矿井安全论证及专项监管监察情况分析报告[R]. 北京: 国家矿山安全监察局, 2021.

[12] GB/T 25217.10-2019, 冲击地压测定、监测与防治方法 第10部分: 煤层钻孔卸压防治方法[S]. 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2019.

[13] 沈建廷, 王飞, 黄鹤. 亭南煤矿工作面定向长钻孔“区域预抽+卸压防冲”可行性分析[J]. 煤矿安全, 2022, 53(11): 184-190.

[14] 林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(3): 1220-1234.

[15] Liu Sibo, Lin Haifei, Li Shugang, et al. Experimental study on the effect of unloading rate on the damage of coal with boreholes[J]. Fuel, 2024, 357: 129965.

[16] 钱鸣高. 采场矿山压力与控制[M]. 北京: 煤炭工业出版社, 1983.

[17] 王振, 梁运培, 金洪伟, 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程报, 2008, 25(4): 444-448.

[18] 郑雨天. 井巷和钻孔周围三维应力场的简化模式[J]. 煤炭学报, 1982, (4): 74-80.

[19] 王法凯, 蒋承林, 吴爱军, 等. 瓦斯测压孔壁围岩坍塌机理及孔壁注浆加固技术[J]. 煤炭科学技术, 2010, 38(9): 10-13.

[20] Zhai Cheng, Xu, Jizhao, Liu Shimin, et al. Investigation of the discharge law for drill cuttings used for coal outburst prediction based on different borehole diameters under various side stresses[J]. Powder Technology, 2018, 325: 396-404.

[21] 翟成, 李全贵, 孙臣, 等. 松软煤层水力压裂钻孔失稳分析及固化成孔方法[J]. 煤炭学报, 2011, 36(6): 953-958.

[22] Wang Hongwei, Miao Miao, Zhou Tao. An analytical approach to the stress distribution around a cased borehole in an anisotropic formation[J]. Applied Mathematical Modelling, 2022, 107: 316-331.

[23] Schoenberg Michael. Elastic wave behavior across linear slip interfaces[J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1516-1521.

[24] 李志华, 涂敏, 姚向荣. 深部瓦斯抽采钻孔稳定性与成孔控制数值分析[J]. 中国煤炭, 2011, 31(3): 85-89.

[25] 郝晋伟, 张春华. 构造松软煤层钻孔多应力耦合分区失稳机理研究[J]. 世界科技研究与发展, 2016, 38(2): 386-391.

[26] Fan Xinxin, Feng Hong, Wang Yunhong, et al. Prediction method and distribution characteristics of in situ stress based on borehole deformation-A case study of coal measure stratum in Shizhuang block, Qinshui Basin[J]. Frontiers in Earth Science, 2022.

[27] 韩昌瑞, 白世伟, 张波. 正交各向异性岩体钻孔周围应力分布的应力变分法分析[J]. 岩石力学, 2007, 28(12): 2593-2597.

[28] 孙路路, 程卫民, 武猛猛, 等. 基于Mohr-Coulomb准则的含瓦斯煤层巷帮侧塑性区宽度的探讨[J]. 采矿与安全工程学报, 2017, 34(5): 955-961.

[29] 王志明,孙玉宁,王永龙,等. 瓦斯抽采钻孔动态漏气圈特性及漏气处置研究[J]. 中国安全生产科学技术, 2016, 12(5): 139-145.

[30] 翟成, 向伟贤, 余旭, 等. 瓦斯抽采钻孔柔性膏体封孔材料封孔性能研究[J]. 中国矿业大学学报, 2013, 42(6): 982-988.

[31] 王永龙, 翟新献, 孙玉宁. 松软突出煤层钻孔护壁力学作用机理分析[J]. 安徽理工大学学报(自然科学版), 2012, 32(4): 50-55.

[32] 刘建林, 刘飞, 李泉新, 等. 碎软煤层瓦斯抽采钻孔孔壁稳定性分析[J]. 煤矿安全, 2018, 49(8): 189-193.

[33] 张天军, 张磊, 张超, 等. 巷道与钻孔交叉三维数值建模方法[J]. 西安科技大学学报, 2015, 35(6): 688-694.

[34] 张磊. 顺层预抽钻孔封孔段裂隙扩展机理及检测技术[R]. 博士后研究工作报告, 2022.

[35] Zhang Lei, Huang Peng, Liu Sijia, et al. Relief mechanism of segmented hole reaming and stress distribution characteristics of drilling holes in deep coal mine[J]. Processes, 2022, 10: 1566.

[36] Park Kyungwoo, Choi Chaesoon, Park Byeonghak, et al. Numerical and experimental investigation of the hydrogeological evolution around a borehole due to stress redistribution in fractured rock[J]. Tunnelling and Underground Space Technology, 2022, 124.

[37] Cheng Wan, Jiang Guosheng, Zhou Zhidong, et al. Numerical simulation for the dynamic breakout of a borehole using boundary element method[J]. Geotechnical and Geological Engineering, 2019, 37: 2873-2881.

[38] 盖德成, 李东, 姜福兴, 等. 基于不同强度煤体的合理卸压钻孔间距研究[J]. 采矿与安全工程学报, 2020, 37(3): 578-593.

[39] Lin Qibin, Cao Ping, Meng Jingjing, et al. Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102692.

[40] Zhao Hongbao, Li Jinyu, Liu Yihong, et al. Experimental and measured research on three-dimensional deformation law of gas drainage borehole in coal seam[J] International Journal of Mining Science and Technology, 2020, 30(3): 397-403.

[41] Liu Xuewei, Chen Haixiao, Liu Bin, et al. Experimental and numerical study on failure characteristics and mechanism of coal under different quasi-static loading rates[J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103478.

[42] Zhang Tianjun, Zhang Lei, Li Shugang, et al. Stress inversion of coal with a gas drilling borehole and the law of crack propagation[J]. Energies, 2017, 10(11): 1743.

[43] Wang Xiaoran, Wang Enyuan, Liu Xiaofei, et al. Failure mechanism of Fractured Rock and its AE behaviors under different loading rates[J]. Engineering Fracture Mechanics, 2021, 247(16): 107674.

[44] Zhang Zhibo, Liu Xianan, Zhang Yinghua, et al. Comparative study on fracture characteristics of coal and rock samples based on acoustic emission technology[J]. Theoretical and Applied Fracture Mechanics, 2020, 111: 102851.

[45] Brace W.F., Paulding B.W., Scholz C. Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research, 1966, 71(16): 3939-3953.

[46] Bieniawski Z.T. Mechanism of brittle fracture of rock, Parts I, II and III[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1967, 4(4): 395-430.

[47] Martin C.D. The strength of massive Lac du Bonnet granite around underground opening[D]. Manitoba, Canada: University of Manitoba, 1993.

[48] Lee B., Rathnaweera T.D. Stress threshold identification of progressive fracturing in Bukit Timah granite under uniaxial and triaxial stress conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(4): 301-330.

[49] Hao Qijun, Liu Xiaohui, Hu Ankui, et al. Research on stress threshold of deep buried coal rock under quasi-static strain rate based on acoustic emission[J]. Advances in Civil Engineering, 2020: 1-13.

[50] Liu Shuai, Liu Handong, Liu Haining, et al. Numerical simulation of mesomechanical properties of limestone containing dissolved hole and persistent joint[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103572.

[51] Wong T.F. Micromechanics of faulting in westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1982, 19(2): 49-64.

[52] Lajtai E.Z., Lajtai V.N. The collapse of cavities[J]. International Journal of Rock Mechanics and Mining Sciences, 1975, 12(4): 81-86.

[53] Lajtai E.Z. Brittle Fracture in compression[J]. International Journal of Fracture, 1974, 10: 525-536.

[54] Miao Shuting, Pan Pengzhi, Wu Zhenhua, at al. Fracture analysis of sandstone with a single filled flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018 204: 319-343.

[55] Wang Yixian, Zhang Hui, Lin Hang, et al. Mechanical behavior and failure analysis of fracture-filled gneissic granite[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102674.

[56] Li Diyuan, Zhu Quanqi, Zhou Zilong, et al. Fracture analysis of marble specimens with a hole under uniaxial compression by digital image correlation[J]. Engineering Fracture Mechanics, 2017, 183(1): 109-124.

[57] Wang Guangyong, Yu Rui, Ma Dongfang, et al. Failure characteristics and failure process investigation of fine-grained sandstone under impact load by ultrahigh speed DIC and SEM techniques[J]. International Journal of Geomechanics, 2022, 22(7): 0002438.

[58] 王登科, 张航, 魏建平, 等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报, 2021, 46(11): 3550-3564.

[59] 王笑然, 王恩元, 刘晓斐, 等. 裂隙砂岩裂纹扩展声发射响应及速率效应研究[J]. 岩石力学与工程学报, 2018, 37(6): 1446-1458.

[60] Maria V. Felice, Fan Zheng. Sizing of flaws using ultrasonic bulk wave testing: A review[J]. Ultrasonics, 2018: 26-42.

[61] Wu Hao, Zhao Guoyan, Liang Weizhang, et al. Experimental investigation on fracture evolution in sandstone containing an intersecting hole under compression using DIC technique[J]. Advances in Civil Engineering, 2019: 3561395.

[62] Lai Xingping, Ren Jie, Cui Feng, et al. Study on vertical cross loading fracture of coal mass through hole based on AE-TF characteristics[J]. Applied Acoustics, 2020, 166: 107353.

[63] Jia Haishan, Wang Enyuan, Dong Dazhao, et al. Precursory changes in wave velocity for coal and rock samples under cyclic loading[J]. Results in Physics, 2019, 12: 432-434.

[64] 张天军, 纪翔, 张磊, 等. 瓦斯抽采钻孔孔周裂隙演化及等效裂纹宽度试验研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3625-3633.

[65] 段进超, 唐春安, 常旭, 等. 单轴压缩下含孔脆性材料的力学行为研究[J]. 岩石力学, 2006, 27(8): 1416-1420.

[66] Meng Fanbao, Wen Zhijie, Shen Baotang, et al. Fracture and evolution characteristics of specimens containing double holes[J]. Geomechanics and Engineering, 2021, 26(6): 593-605.

[67] Huang Yanhua, Yang Shengqi, Ranjith P.G., et al. Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modeling[J]. Computers and Geotechnics, 2017, 88: 182-198.

[68] Ma Wenbo, Chen Yanli, Yi Wei, et al. Investigation on crack evolution behaviors and mechanism on rock-like specimen with two circular-holes under compression[J]. Theoretical and Applied Fracture Mechanics, 2022, 118: 103222.

[69] Liu Ting, Lin Baiquan, Fu Xuehai, et al. Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams[J]. Process Safety and Environmental Protection, 2020, 141: 202-214.

[70] 马智会, 潘荣锟, 马智勇, 等. 顺层钻孔瓦斯抽采漏气规律及封孔技术研究[J]. 煤炭科学技术, 2020, 48(8): 90-96.

[71] 徐超, 秦亮亮, 王凯, 等. 非均匀应力场瓦斯抽采钻孔扰动煤体变形破坏特征[J]. 煤炭学报, 2023, 48(4): 1538-1550.

[72] 胡耀青, 赵阳升, 杨栋, 等. 煤体的渗透性与裂隙分维的关系[J]. 岩石力学与工程学报, 2002, 21(10): 1452-1456.

[73] 冯增朝. 低渗透煤层瓦斯强化抽采理论及应用[M]. 北京: 科学出版社, 2008.

[74] 岑培山, 田坤云, 魏二剑, 等. 多级加卸载下层理裂隙煤体瓦斯渗流轴向效应及应用[J]. 煤矿安全, 2021, 52(12): 9-14.

[75] 张磊, 阚梓豪, 薛俊华, 等. 循环加卸载作用下完整和裂隙煤体渗透性演变规律研究[J]. 岩石力学与工程学报, 2021, 40(12): 2487-2499.

[76] Hatambeigi Mahya, Anwar Ishtiaque, Lord David L, et al. Wellbore cement fracture permeability as a function of confining stress and pore pressure[J]. Geomechanics for Energy and the Environment, 2023, 33: 100428.

[77] Liu Yubing, Zhao Dong, Li Yiteng, et al. Permeability evolution of intact and fractured coal during progressive deformation subjected to true triaxial stresses[J]. Processes, 2023, 11(10).

[78] 冯学敏, 陈胜宏. 含复杂裂隙网络岩体渗流特性研究的复合单元法[J]. 岩石力学与工程学报, 2006, 25(5): 918-924.

[79] 宋晓晨, 徐卫亚. 裂隙岩体渗流概念模型研究[J]. 岩土力学, 2004, 25(2): 226-232.

[80] 黄先伍, 唐平, 缪协兴, 等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学, 2005, 42(9): 1385-1388.

[81] 孙明贵, 李天珍, 黄先伍, 等. 破碎岩石非Darcy 流的渗透特性试验研究[J]. 安徽理工大学学报(自然科学版), 2003, 123(2): 11-13.

[82] Li Zhiqiang, Wang Aijie, Li Lin, et al. Influence mechanism of gas pressure on multiscale dynamic apparent diffusion-permeability of coalbed methane[J]. ACS omega, 2023, 8(39): 35964-35974.

[83] Chao Jiangkun, Yu Minggao, Chu Tingxiang, et al. Evolution of broken coal permeability under the condition of stress, temperature, moisture content, and pore pressure[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2803-2814.

[84] 尚宏波, 靳德武, 张天军, 等. 三轴应力作用下破碎煤体渗透特性演化规律[J]. 煤炭学报, 2019, 44(4): 1066-1075.

[85] Song Shuang, Pang Mingkun, Guo Yi, et al. Experimental investigation of the non-darcy equivalent permeability of fractured coal bodies: The role of particle size distribution[J]. Fractal and Fractional, 2023, 7(6).

[86] 张天军, 孟钰凯, 庞明坤, 等. 有效应力对孔周破裂煤体渗透率演化规律的影响[J]. 煤炭科学技术, 2023, 51(S1): 122-131.

[87] Pang Mingkun, Zhang Tianjun, Ji Xiang, et al. Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes[J]. Energy, 2023, 254: 12476.

[88] Pang Mingkun, Pan Hongyu, Ji Bingnan, et al. Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes[J]. Energy, 2023, 270: 126758.

[89] 胡胜勇, 刘红威. 煤层瓦斯抽采钻孔漏气机理及应用研究进展[J]. 煤矿安全, 2016, 47(5): 170-173.

[90] 周厚权, 申凯, 陈宾. 瓦斯抽采钻孔漏气类型划分与高效封孔技术应用研究[J]. 矿业安全与环保, 2019, 46(1): 33-36, 42.

[91] 郭平. 瓦斯抽采钻孔漏气模型及封孔工艺优化研究[J]. 煤炭技术, 2020, 39(6): 82-85.

[92] Zheng Chunshan, Kizil S. Mehmet, Chen Zhongwei, et al. Effects of coal properties on ventilation air leakage into methane gas drainage boreholes: Application of the orthogonal design[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 88-95.

[93] Zhang Junxiang, Li Bo, Sun Yuning. Dynamic leakage mechanism of gas drainage borehole and engineering application[J]. International Journal of Mining Science and Technology, 2018, 28(3): 505-512.

[94] 乔元栋, 程虹铭. 基于COMSOL的顺层抽采钻孔漏气通及带压封孔技术研究[J]. 煤炭工程, 2019, 51(7): 114-119.

[95] 王志明, 孙玉宁, 王永龙, 等. 瓦斯抽采钻孔动态漏气圈特性及漏气处置研究[J]. 中国安全生产科学技术, 2016, 12(5): 139-145.

[96] Liu Peng, Jiang Yongdong, Fu Boxue. A novel approach to characterize gas flow behaviors and air leakage mechanisms in fracture-matrix coal around in-seam drainage borehole[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103243.

[97] Wang Zhiming, Sun Yuning, Wang Yonglong, et al. A coupled model of air leakage in gas drainage and an active support sealing method for improving drainage performance[J]. Fuel, 2019, 237: 1217-1227.

[98] Zhang Junxiang, Liu Yanwei, Ran Peiliang, et al. A fully multifield coupling model of gas extraction and air leakage for in-seam borehole[J]. Energy Reports, 2021, 7: 1293-1305.

[99] 杨宏民, 任发科, 王兆丰, 等. 瓦斯抽采钻孔封孔质量检测及定量评价方法[J]. 煤炭学报, 2019, 44(S1): 164-170.

[100] Zhang Junxiang, Li Bo, Liu Yanwei, et al. Dynamic multifield coupling model of gas drainage and a new remedy method for borehole leakage[J]. Acta Geotechnica, 2022, 17(10): 4699-4715.

[101] Sun Xiaoyan, Li Ke, Wang Xin. Capsule-bag-type sealing technology for gas drainage boreholes and its application[J]. Geofluids, 2022: 1-14.

[102] Li Bo, Zhang Junxiang, Liu Yanwei, et al. Interfacial porosity model and modification mechanism of broken coal grouting: A theoretical and experimental study[J]. Surfaces and Interfaces, 2022, 33: 102286.

[103] 冯志强, 康红普. 新型聚氨酯堵水注浆材料的研究及应用[J]. 岩土工程学报, 2010, 32(3): 375-380.

[104] 贾小盼, 栗莎, 马瑞彦, 等. 纳米SiO2改性聚氨酯注浆材料的制备及性能研究[J]. 功能材料, 2022, 53(7): 7232-7236.

[105] 刘鲤粽, 于潇沣. 水玻璃参数对改性聚氨酯注浆材料稳定性的影响[J]. 煤炭科学技术, 2021, 49(8): 103-107.

[106] 张海波, 狄红丰, 刘庆波, 等. 微纳米无机注浆材料研发与应用[J]. 煤炭学报, 2020, 45(3): 949-955.

[107] Zhao Pengtao, Wang Haiqiao, Wang Long, et al. Parameter optimization of constant pressure grouting technology for borehole sealing with inorganic noncondensable material in tectonic coalbed of south China[J]. Geofluids, 2023.

[108] 杨政鹏, 孙钰坤, 管学茂, 等. 新型加固煤体硅酸盐基无机/有机复合注浆材料的制备及性能[J]. 材料导报, 2013, 27(8): 120-123.

[109] 李孜军, 陈阳, 林武清. 水泥灰三相泡沫的形成机理与稳定性试验研究[J]. 中国安全生产科学技术, 2014, 10(11): 54-59.

[110] 张钧祥, 宋维宾, 孙玉宁, 等. 新型高分子泡沫堵漏材料试验研究及工程应用[J]. 煤炭学报, 2018, 43(S1): 158-166.

[111] 鲁义, 谷旺鑫, 丁仰卫, 等. 固结软煤层瓦斯抽采钻孔周围裂隙的弹性胶结材料研制[J]. 煤炭科学技术, 2022, 50(2): 129-136.

[112] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016, 45(3): 433-439.

[113] 陈学习, 李琦, 常忠乾, 等. 瓦斯抽采钻孔气囊延时膨胀带压注浆密封新技术[J]. 煤矿安全, 2014, 45(6): 61-64.

[114] 徐文全, 邓增社, 侯恩科, 等. 瓦斯抽采钻孔动态密封技术[J]. 中国科技论文, 2015, 10(9): 1084-1087.

[115] 王振锋, 周英, 孙玉宁, 等. 新型瓦斯抽采钻孔注浆封孔方法及封堵机理[J]. 煤炭学报, 2015(3): 588-595.

[116] 杨磊, 朱昱辰, 李义敬, 等. 瓦斯抽采钻孔径向膨胀渗透封孔技术研究[J]. 煤炭科学技术, 2013, 41(10): 60-63.

[117] 包若羽. 松软煤层抽采钻孔密封段失稳机理及新型加固密封技术研究[D]. 西安: 西安科技大学, 2019.

[118] 李涛. 抽采钻孔周围煤体渗流演化规律及注浆降渗机制研究[D]. 北京: 中国矿业大学(北京), 2023.

[119] Zhou Yuan, Liu Bin, Wu Zhijun, et al. Experimental Investigation on the grouting diffusion characteristics and relative filling degree of chemical slurry in fractured porous sandstone[J]. Rock Mechanics and Rock Engineering, 2023, 56(11): 7819-7837.

[120] 杨仁树, 薛华俊, 郭东明, 等. 基于注浆试验的深井软岩CT分析[J]. 煤炭学报, 2016, 41(2): 345–351.

[121] Zhang Guangsen, Xiao Mingli, Zhang Yadong, et al. Experimental and numerical study on the mechanical properties of compressively precracked sandstone repaired by grouting[J]. Construction and Building Materials, 2022, 350.

[122] Gao Yingjun, Yao Banghua, Zhang Hongtu, et al. Study on the test of coal mass fracture grouting sealing with coal-based materials and its application[J]. Frontiers in Earth Science, 2023.

[123] 杨志斌, 董书宁. 压水试验定量评价注浆效果研究[J]. 煤炭学报, 2018, 43(7): 2021-2028.

[124] Xu Zhipeng, Liu Changwu, Zhou Xingwang, et al. Full-scale physical modelling of fissure grouting in deep underground rocks[J]. Tunnelling and Underground Space Technology, 2019, 89: 249-261.

[125] 张振峰, 康红普, 姜志云, 等. 千米深井巷道高压劈裂注浆改性技术研发与实践[J]. 煤炭学报, 2020, 45(3): 972-981.

[126] 刘奇, 陈卫忠, 袁敬强, 等. 基于渗流-侵蚀理论的岩溶充填介质注浆加固效果评价[J]. 岩石力学与工程学报. 2020, 39(3): 1-9.

[127] 魏建平, 姚邦华, 刘勇, 等. 裂隙煤体注浆浆液扩散规律及变质量渗流模型研究[J]. 煤炭学报, 2020, 45(1): 204-212.

[128] 刘永超, 袁振宇, 程雪松, 等. 不同注浆材料对隧道漏水漏砂封堵效果试验研究[J]. 岩土工程学报, 2021, 43(S2): 249-252.

[129] Sun Lei, Giovanni Grasselli, Liu Quansheng, et al. Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104138.

[130] Wang Hao, Wang Enyuan, Li Zhonghui, et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model[J]. Process Safety and Environmental Protection, 2020, 136: 15-27.

[131] Zhang Yongjiang, Zou Quanle, Guo Lindong. Air-leakage Model and sealing technique with sealing–isolation integration for gas-drainage boreholes in coal mines[J]. Process Safety and Environmental Protection, 2020, 140: 258-272.

[132] Li Jianbo. Numerical study on diffusion distance and plugging effect of grouting in a vertical fracture under high water pressure[J]. Geotechnical and Geological Engineering, 2022, 40(11): 5497-5506.

[133] Zhang Lei, Jing Chen, Li Shugang, et al. Seepage law of nearly flat coal seam based on three-dimensional structure of borehole and the deep soft rock roadway intersection[J]. Energies, 2022, 15(14): 15145012.

[134] 孔祥言. 高等渗流力学. 第3版[M]. 安徽: 中国科学技术大学出版社, 2020.

[135] 刘力源. 煤岩双重孔隙介质损伤模型及其用于压裂过程研究[D]. 沈阳: 东北大学, 2018.

[136] 潘继良, 高召宁, 任奋华. 考虑应变软化和扩容的圆形巷道围岩强度准则效应[J]. 煤炭学报, 2018, 43(12): 3293-3301.

[137] Gao Feng, Xue Yi, Gao Yanan, et al. Fully coupled thermo-hydro-mechanical model for extraction of coal seam gas with slotted boreholes[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 226-235.

[138] Shi Yu, Lin Baiquan, Liu Ting, et al. Synergistic ECBM extraction technology and engineering application based on hydraulic flushing combing gas injection displacement in low permeability coal seams[J]. Fuel, 2022, 318: 123688.

[139] 刘之葵, 梁金城, 朱寿增, 等. 岩溶区含溶洞岩石地基稳定性分析[J]. 岩土工程学报, 2003, 25(5): 629-633.

[140] 徐芝纶. 弹性力学简明教程[M]. 北京: 高等教育出版社, 2002.

[141] 张小波, 赵光明, 孟祥瑞. 考虑峰后应变软化与扩容的圆形巷道围岩弹塑性D-P准则解[J]. 采矿与安全工程学报, 2013, 30(6): 903-910.

[142] 高召宁, 孟祥瑞, 付志亮. 考虑渗流、应变软化和扩容的巷道围岩弹塑性分析[J]. 重庆大学学报, 2014, 37(1): 96-101.

[143] 郭军, 王凯旋, 蔡国斌, 等. 声发射信号研究进展及其在煤温感知领域应用前景[J]. 煤炭科学技术, 2022, 50(11): 84-92.

[144] 刘军, 卢鹏, 刘志宽, 等. 顺层钻孔瓦斯抽采叠加效应影响研究[J]. 煤炭科学技术, 2023: 1-11.

[145] 曾祥太, 吕爱钟. 含有非圆形双孔的无限平板中应力的解析解研究[J]. 力学学报, 2019, 51(1): 170-181.

[146] Haddon RAW. Stresses in an infinite plate with two unequal circular holes[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1967, 20(3): 277-291.

[147] 郭玉峰, 王华宁, 蒋明镜. 水下浅埋双孔平行隧道渗流场的解析研究[J]. 岩土工程学报, 2021, 43(6): 1088-1096.

[148] Ling Chibing. On the stresses in a plate containing two circular holes[J]. Journal of Applied Physics, 1948, 19(1): 77-82.

[149] Hoang Son K, Abousleiman Younane N. Extended Green's solution for the stresses in an infinite plate with two equal or unequal circular holes[J]. 2008, 75(3): 0310161.

[150] Meguid SA, Shen CL. On the elastic fields of interacting defense and main hole systems[J]. International Journal of Mechanical Sciences, 1992, 34(1): 17-29.

[151] Ting K, Chen KT, Yang WS. Applied alternating method to analyze the stress concentration around interacting multiple circular holes in an infinite domain[J]. International Journal of Solids and Structures, 1999, 36(4): 533-556.

[152] 李磊, 李寿君. 基于Schwarz交替法求解分析浅埋近距离煤层开采覆岩结构演化规律[J]. 采矿与岩层控制工程学报, 2021, 3(2): 023515.

[153] Horii H, Nemat-Nasser S. Elastic fields of interacting inhomogeneities[J]. International Journal of Solids and Structures, 1985, 21(7): 731-745.

[154] Wang Jianlin, Crouch Steven L, Mogilevskaya Sofia G. A complex boundary integral method for multiple circular holes in an infinite plane[J]. Engineering Analysis with Boundary Elements, 2003, 27(8): 789-802.

[155] Tan Lihai, Ren Ting, Dou Linming, et al. Analytical stress solution for rock mass containing two holes based on an improved Schwarz alternating method[J]. Theoretical and Applied Fracture Mechanics, 2021, 116: 103092.

[156] 吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007.

[157] 萨文. 孔附近的应力集中[M]. 北京: 科学出版社, 1958.

[158] 于学馥. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983.

[159] 赵明华, 袁腾方, 陈言章, 等. 基于Schwarz交替法的岩溶区双孔土洞地基稳定性分析[J]. 水利水电科技进展, 2018, 38(6): 49-55.

[160] ]张路青, 杨志法, 吕爱钟. 两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J]. 岩石力学与工程学报, 2000, 19(5): 594-589.

[161] 张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安: 西安科技大学, 2019.

[162] ISRM. Suggested methods for determining the strength of rock materials in triaxial compression: revised version. International Journal of Rock Mechanics and Mining Sciences, 1983, 20(6): 285-290.

[163] Cerrillo C, Jiménez A, Rufo M, et al. New contributions to granite characterization by ultrasonic testing[J]. Ultrasonics, 2014, 54(1): 156-167.

[164] Chen Yang, Wei Jiangxiong, Huang Haoliang, et al. Application of 3D-DIC to characterize the effect of aggregate size and volume on non-uniform shrinkage strain distribution in concrete[J]. Cement and Concrete Composites, 2018, 86:178-189.

[165] Miao Shuting, Pan Pengzhi, Zhao Shankun, et al. A new DIC-based method to identify the crack mechanism and applications in fracture analysis of red sandstone containing a single flaw[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 3847-3871.

[166] Zhao Tongbin, Zhang Wei, Gu Shitan, et al. Study on fracture mechanics of granite based on digital speckle correlation method[J]. International Journal of Solids and Structures, 2020, 193-194(C): 192-199.

[167] Li Diyuan, Huang Peiyan, Chen Zhanbiao, et al. Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology[J]. Engineering Fracture Mechanics, 2020, 235.

[168] Gao Yue, Cheng Teng, Su Yong, et al. High-efficiency and high-accuracy digital image correlation for three-dimensional measurement[J]. Optics and Lasers in Engineering, 2015, 65: 73-80.

[169] Jing Chen, Zhang Lei. Characterization of tensile crack propagation and energy evolution during the failure of coal-rock samples containing holes[J]. Sustainability, 2022, 14:14279.

[170] Liu Xiaofei, Wang Xiaoran, Wang Enyuan, et al. Effects of gas pressure on bursting liability of coal under uniaxial conditions[J]. Journal of Natural Gas Science and Engineering, 2017, 39: 90-100.

[171] 马少鹏, 周辉. 岩石破坏过程中试件表面应变场演化特征研究[J]. 岩石力学与工程学报, 2008, 27(8): 1667-1673.

[172] 王家臣, 李良晖, 杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报, 2018, 43(11): 3051-3061.

[173] Guo Xiaoyue, Zhang Li, Xing Yuxiang. Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging[J]. Nuclear Science and Techniques, 2022, 33(6): 116-129.

[174] 徐黎明, 吕继东. 基于同态滤波和K均值聚类算法的杨梅图像分割[J]. 农业工程学报, 2015, 31(14): 202-208.

[175] 张雪峰, 闫慧. 基于中值滤波和分数阶滤波的图像去噪与增强算法[J]. 东北大学学报(自然科学版), 2020, 41(4): 482-487.

[176] Du Shiping, Luo Kailun, Zhi Yan, et al. Binarization of grayscale quantum image denoted with novel enhanced quantum representations[J]. Results in Physics, 2022, 39: 105710.

[177] Ge Xiurun, Ren Jianxi, Pu Yibin, et al. Real-in time CT test of the rock meso-damage propagation law[J]. Science in China, 2001, 44(3):328-336.

[178] 张科, 张凯. 裂隙砂岩变形破裂过程中应变场灰度及纹理特征分析[J]. 煤炭学报, 2021, 46(4): 1253-1262.

[179] Liu Xianghua, Zhang Ke, Liu Wwenlian, et al. Grayscale evolution characterization of the strain field and precursor identification in sandstone containing multiple flaws after freeze–thaw treatment[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(22).

[180] Ji Xiang, Zhang Tianjun, Ji Bing, et al. Gray characteristics analysis of strain field of coal and rock bodies around boreholes during progressive damage based on digital image[J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 5607-5620.

[181] 邹飞, 李海波, 周青春, 等. 基于数字图像灰度相关性的类岩石材料损伤分形特征研究[J]. 岩土力学, 2012, 33(3): 731-738.

[182] 黄正红, 邓守春, 李海波, 等. 拉伸荷载作用下含预制裂纹平板试样表面特征量演化规律研究[J]. 岩石力学与工程学报, 2019, 38(3): 527-541.

[183] Yun Huisung, Modarres Mohammad. Measures of Entropy to Characterize Fatigue Damage in Metallic Materials[J]. Entropy, 2019, 21(8): 804.

[184] Wang Weixing, Li Lei, Han Ya. Crack detection in shadowed images on gray level deviations in a moving window and distance deviations between connected components [J]. Construction and Building Materials, 2021, 271: 121885.

[185] 郭文婧, 马少鹏, 康永军, 等. 基于数字散斑相关方法的虚拟引伸计及其在岩石裂纹动态观测中的应用[J]. 岩土力学, 2011, 32(10): 3196-3200.

[186] 杨小彬, 韩心星, 王逍遥, 等. 等幅循环加载岩石变形局部化带位移演化规律[J]. 煤炭学报, 2019, 44(4): 1041-1048.

[187] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17): 3003-3010.

[188] 张志镇, 高峰. 3种岩石能量演化特征的试验研究[J]. 中国矿业大学学报, 2015, 44(3): 416-422.

[189] 潘一山, 杨小彬, 马少鹏, 等. 岩土材料变形局部化的实验研究[J]. 煤炭学报, 2002(3): 281-284.

[190] 宋义敏, 姜耀东, 马少鹏, 等. 岩石变形破坏全过程的变形场和能量演化研究[J]. 岩土力学, 2012, 33(5): 1352-1356.

[191] Li QM. Strain energy density failure criterion[J]. International Journal of Solids and Structures, 2001, 38(38-39): 6997-7013.

[192] 张天军, 庞明坤, 彭文清, 等. 不同产状裂隙煤样三轴承压下非Darcy渗流特性[J]. 煤炭学报, 2019, 44(1): 246-253.

[193] 周世宁. 瓦斯在煤层中流动的机理[J]. 煤炭学报, 1990, 15(1): 15-24.

[194] 张磊, 杨世华, 武晋宇, 等. 有效应力下连续级配煤体的渗透特性试验[J]. 煤炭学报, 2024: 1-12.

[195] 张天军, 刘楠, 庞明坤, 等. 级配破碎煤岩体压实过程中再破碎特征研究[J]. 采矿与安全工程学报, 2021, 38(2): 380-387.

[196] 张超林, 王恩元, 许江, 等. 煤层瓦斯压力对瓦斯抽采效果的影响[J]. 采矿与安全工程学报, 2022, 39(3): 634-642.

[197] 宋鑫, 舒龙勇, 王斌, 等. 低瓦斯赋存高强度开采煤层驱替促抽技术研究[J]. 采矿与安全工程学报, 2023, 40(4): 847-856.

[198] Klinkenberg L J. The Permeability of porous media to liquids and gases[M]. American Petroleum Institute, 1941.

[199] Forchheimer, P. Wasserbewegung durch Boden[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1901, 45: 1782-1788.

[200] Walsh JB. Effect of pore pressure and confining pressure on fracture permeability[J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(5): 429-435.

[201] Robin Pierre-Yves F. Note on effective pressure[J]. Journal of Geophysical Research, 1973, 78(14): 2434-2437.

[202] Terzaghi K. V. The shearing resistance of saturated soils and the angle between the planes of shear[J]. International Conference on Soil Mechanics, 1936, 1: 54-59.

[203] Bernabe Y. The effective pressure law for permeability in Chelmsford granite and barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 267-275.

[204] Handin John, Hager Jr Rex V, Friedman Melvin, et al. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests[J]. AAPG Bulletin, 1963, 47(5): 717-755.

[205] Brink G, Heymann G. Soil collapse from an effective stress perspective[J]. Journal of the South African Institution of Civil Engineering, 2014, 56(3): 30-33.

[206] Kozeny J. Über kapillare leitung des wassers im boden, sitzungsberichte[J]. Royal Academy of Science, Vienna, Processes Class I, 1927, 136(2a): 271-306.

[207] Carman P. Permeability of saturated sands, soil and calys[J]. Journal of Agricultural Science, 1939, 29(2): 262-73.

[208] Zhang Tianjun, Bao Ruoyu, Li Shugang, et al. Expansion properties and creep tests for a new type of solidified expansive sealing material for gas drainage boreholes in underground mines[J]. Environmental Earth Sciences, 2018, 77: 1-13.

[209] 邹光华, 师皓宇, 田多. 基于泥砂介质的注浆渗流-渗透过程分析与力学机理[J]. 煤矿安全, 2016, 47(2): 196-199.

[210] Si Leilei, Li Zenghua, Yang Yongliang, et al. The stage evolution characteristics of gas transport during mine gas extraction: Its application in borehole layout for improving gas production[J]. Fuel, 2019, 241: 164-175.

[211] 刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 徐州: 中国矿业大学, 2019.

中图分类号:

 TD712.6    

开放日期:

 2028-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式