- 无标题文档
查看论文信息

论文中文题名:

 全时域瞬变电磁OCCAM约束反演    

姓名:

 李静蕊    

学号:

 18209073007    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081802    

学科名称:

 工学 - 地质资源与地质工程 - 地球探测与信息技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地球探测与信息技术    

研究方向:

 电法勘探    

第一导师姓名:

 解海军    

第一导师单位:

 高工    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Full-time Transient Electromagnetic OCCAM Constrained Inversion Method    

论文中文关键词:

 瞬变电磁法 ; 全时域 ; OCCAM反演 ; 横向约束 ; 测井约束    

论文外文关键词:

 Transient electromagnetic method ; full-time domain ; OCCAM inversion ; lateral restraint ; lithology restraint    

论文中文摘要:

       瞬变电磁法(TEM)具有探测精度高、深度大、施工效率高和对低阻异常体反应敏感的优势,常作为煤系地层富水性探测的首选方法。但瞬变电磁反演精度还存在一定问题,尚待改善。本文提出了带测井约束的全时域瞬变电磁OCCAM反演,旨在改善常规反演方法中存在的多解性、非唯一性问题。

       论文首先分析了均匀半空间的瞬变电磁场,进而研究了复杂条件下的瞬变电磁响应特征。对比分析了垂直阶跃与斜阶跃瞬变电磁响应特征,在此基础上研究了瞬变电磁一维全时域正演,通过在均匀层状半空间中建立不同目标层埋深、不同目标层电性和不同目标层厚度等模型,分析了不同地电模型的瞬变电磁响应特征,为反演解释工作提供了理论支持。

       其次,基于常规一维OCCAM反演以及带横向约束拟二维反演,通过对目标函数中的模型粗糙度矩阵进行修改,加入模型约束项,推导出修改后目标函数的迭代格式,进而得到以岩石电阻率参数作为先验信息的瞬变电磁约束反演算法。建立了四层地电模型,分别进行全时域一维OCCAM反演、带横向约束的全时域拟二维OCCAM反演和全时域测井约束OCCAM反演,发现全时域测井约束OCCAM反演准确度优于带横向约束的全时域拟二维OCCAM反演,带横向约束的全时域拟二维OCCAM反演准确度优于全时域一维OCCAM反演。

       最后,对实测瞬变电磁数据进行全时域一维OCCAM反演、带横向约束的全时域拟二维OCCAM反演和全时域测井约束OCCAM反演,结合已知资料对三种反演结果电阻率断面图进行了分析,发现测井约束反演加入先验岩石电阻率信息后能够很大程度上提高异常体的分辨率,是一种非常有效的反演方法;将基于测井约束的全时域瞬变电磁横向约束反演的结果与瞬变电磁常规约束反演和商业软件INTERPEX反演的结果进行对比,基于测井约束的全时域瞬变电磁横向约束反演方法能够明显的提高对异常体的分辨率,反映出更多的地质信息。

论文外文摘要:

Transient Electromagnetic Method (TEM) has the advantages of high detection accuracy, large depth,high construction efficiency and sensitivity to low-resistance anomalous bodies.It is often used as the preferred method for water-rich detection of coal-measure formations.However,the accuracy of transient electromagnetic inversion still has certain problems and needs to be improved.This paper proposes a full-time transient electromagnetic OCCAM inversion with logging constraints, which aims to improve the ambiguity and non-uniqueness problems in conventional inversion methods.

First,the thesis analyzes the transient electromagnetic field in a uniform half-space,and then studies the transient electromagnetic response characteristics under complex conditions.The transient electromagnetic response characteristics of vertical step and oblique step are compared and analyzed.Based on this,the one-dimensional full-time forward modeling of transient electromagnetic is studied.By establishing different target depths and different targets in a uniform layered half space Models such as layer electrical properties and different target layer thicknesses analyze the transient electromagnetic response characteristics of different geoelectric models,which provide theoretical support for the inversion and interpretation work.

Secondly,based on conventional one-dimensional OCCAM inversion and quasi-two-dimensional inversion with lateral constraints,by modifying the model roughness matrix in the objective function,adding model constraints, the iterative format of the modified objective function is deduced,and then the The rock resistivity parameter is used as a priori information for the transient electromagnetic constrained inversion algorithm.A four-layer geoelectric model was established,and full-time one-dimensional OCCAM inversion,full-time quasi-two-dimensional OCCAM inversion with lateral constraints, and full-time lithology constrained OCCAM inversion were performed respectively,and full-time lithology constraints were found The accuracy of OCCAM inversion is better than that of full-time quasi-two-dimensional OCCAM inversion with lateral constraints,and the accuracy of full-time quasi-two-dimensional OCCAM inversion with lateral constraints is better than that of full-time one-dimensional OCCAM inversion.

Finally, perform full-time one-dimensional OCCAM inversion of the measured transient electromagnetic data,full-time pseudo-two-dimensional OCCAM inversion with lateral constraints, and full-time lithology constrained OCCAM inversion,combining known data to perform three inversions The resistivity profile of the results of the analysis was analyzed, and it was found that the addition of prior rock resistivity information in the lithology constrained inversion can greatly improve the resolution of anomalous bodies.It is a very effective inversion method; it will be based on lithology.The results of the constrained full-time transient electromagnetic lateral confinement inversion are compared with the results of the conventional transient electromagnetic confinement inversion and the commercial software INTERPEX inversion.The full-time transient electromagnetic lateral confinement inversion method based on lithological constraints can Significantly improve the resolution of anomalous bodies,reflecting more geological information.

参考文献:

[1]孙怀凤,李貅,李术才,等.考虑关断时间的回线源激发TEM三维时域有限差分正演[J].地球物理学报,2013,56(3):1049-1064.

[2]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,22(4):1195-1200.

[3]薛国强,李貅,底青云.瞬变电磁法正反演问题研究进展[J].地球物理学进展,2008,23(4):1165-1172.

[4]Knight J H,Raiche A P.Transient electromagnetic field computations for polygonal loops on layered earths [J].Geophysics,1982,47(1):47-50.

[5]Raiche A P.Transient electromagnetic field computations for polygonal loops on layered earths[J].Geophysics,1987,52(6):785-793.

[6]Villinger H.Solving cylindrical geothermal problems using the Gaver-Stehfest inverse Laplace transform[J].Geophysics,2012,50(10):1581-1592.

[7]朴化荣.电磁测深法原理[M].北京:地质出版社,1990:139-161.

[8]罗延钟,昌彦君.G-S变换的快速算法[J].地球物理学报,2000,43(5):684-690.

[9]Guptasarma D.Computation of the time-domain response of a polarizable ground[J].Geophysics,1982,47(11):534–541.

[10]阮百尧.Guptasarma算法在瞬变电磁正演计算中的应用[J].桂林理工大学学报,1996,16(2):167-170.

[11]考夫曼 A.A,凯勒G.V.频率域和时间域电磁测深[M].王建谋译.北京:地质出版社,1987:246-281.

[12]李吉松,朴化荣.电偶源瞬变测深一维正演及视电阻率响应研究[J].物探化探计算技术,1993,15(2):108-116.

[13]王华军.正余弦变换的数值滤波算法[J].工程地球物理学报,2004,1(4):329-335.

[14]Everett M E.Transient electromagnetic response of a loop source over a rough geological medium[J].Geophysical Journal International,2009,177(2):421-429.

[15]Eaton P A,Hohmann G W.The influence of a conductive host on two‐dimensional borehole transient electromagnetic responses[J].Geophysics,1984,49(7):861-869.

[16]Oristaglio M L.Diffusion of electromagnetic fields into a two-dimensional earth:A finite-difference approach[J].Geophysics,1984,49(7):1133-1138.

[17]Adhidjaja J I,Hohmann G W,Oristaglio M L.Two‐dimensional transient electromagnetic responses[J].Geophysics,1985,50(12):2849-2861.

[18]Goldman Y.A finite-element solution for the trasient electromagnetic response of an arbitrary two-dimensional resistivity distribution[J].Geophysics,1986,51(7): 1450-1461.

[19]Leppin M.Electromagnetic modeling of 3-D sources over 2-D inhomo-geneties in the time domain[J].Geophysics,2012,57(8):994-1003.

[20]Everett M E,Edwards R N.Transient marine electromagnetics:the 2.5-D forward problem[J].Geophysical Journal International,1993,113(3):545-561.

[21]Sugeng F,Raiche A,Rijo L.Comparing the Time-Domain EM Response of 2-D and Elongated 3-D Conductors Excited by a Rectangular Loop Source[J].Journal of Geomagnetism&Geoelectricity,1993,45(9):873-885.

[22]Sanfilipo W A.Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space[J].Geophysics,1985,50(5):798-809.

[23]Sanfilipo W A,Eaton P A,Hohmann G W.The effect of a conductive half-space on the transient electromagnetic response of a three-dimensional body[J].Geophysics,1985,50(50):1144-1162.

[24]Newman G A,Hohmann G W,Anderson W L.Transient electromagnetic response of a three-dimensional body in a layered Earth[J].Geophysics,1986,51(8):1608-1627.

[25]Newman G A,Hohmann G W.Transient electromagnetic responses of high-contrast prisms in a layered earth[J].Exploration Geophysics,1988,19(2):691-706.

[26]Swidinsky A,Edwards R N.The transient electromagnetic response of a resistive sheet:straightforward but not trivial[J].Geophysical Journal International,2009,179(3):1488-1498.

[27]W.Hohmann,A.finite-difference time-domain solution for three-dimensional electromagnetic modeling[J].Geophysics,1993,58(6):797-809.

[28]Wang T.Studying the TEM response of a 3-D conductor at a geological contact using the FDTD method[J].Geophysics,1995,60(4):1265-1269.

[29]Zhdanov,Semenovich.M.Three-dimensional electromagnetics[M].USA:Elsevier,2002:3-290.

[30]Commer M,Newman G.A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources[J].Office of Scientific&Technical Information Technical Reports,2004,69(10):1192-1201.

[31]Kuo J T.Transient time-domain electromagnetics[J].Geophysics,1980,45(2):271-291.

[32]SugengF.Modeling the 3D TDEM response using the 3D full-domain finite-element method based on the hexahedral edge-element technique[J].Exploration Geophysics,1998,29(4):615-619.

[33]Stalnaker J L.A finite element approach to the 3D CSEM modeling problem and applications to the study of the effect of target interaction and topography[J].Texas A&M University,2005,17(1):1-171.

[34]Epov M I,Shurina E P,Nechaev O V.3D forward modeling of vector field for induction logging problems[J].Russian Geology&Geophysics,2007,48(9):770-774.

[35]朴化荣,殷长春.利用G-S逆拉氏变换法计算瞬变测深正演问题[J].物化探计算技术,1987,9(4):25-32.

[36]李建慧,刘树才,朱自强,等.矩形回线激发的电磁场与磁场的对称关系研究[J].中南大学学报(自然科学版),2010,41(2):638-642.

[37]李建慧,朱自强,刘树才,等.基于Gaver-Stehfest算法的矩形发射回线激发的瞬变电磁场[J].石油地球物理勘探,2011,46(3):489-492.

[38]翁爱华,刘云鹤,陈玉玲,等.矩形大定源层状模型瞬变电磁响应计算[J].地球物理学报,2010,53(3):646-650.

[39]薛国强,闫述,周楠楠.偶极子假设引起的大回线源瞬变电磁响应偏差分析[J].地球物理学报,2011,54(9):2389-2396.

[40]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.

[41]熊彬.大回线瞬变电磁2.5维正演算法及其资料解释方法中若干关键技术研究[D]武汉:中国地质大学(武汉),2004.

[42]熊彬.关于瞬变电磁法2.5维正演中的几个问题[J].物探化探计算技术,2006,28(2):124-128.

[43]Xiong B.2.5D forward for the transient electromagnetic response of a block linear resistivitydistribution[J]. Journal of Geophysics&Engineering,2011,8(1):115-123.

[44]Li J H,Zhu Z Q,Liu S C,et al.3D numerical simulation for the transient electromagnetic fieldexcited by the central loop based on the vector finite-element method[J].Journal of Geophysics&Engineering,2011,8(4):560-574.

[45]朱传宝.计及位移电流的瞬变电磁法一维正反演研究[D].重庆:重庆大学,2017.

[46]Nabighian M N.Quasi-static transient response of a conducting half-space—An approximate representation[J].Geophysics,1979,44(10):1700-1705.

[47]Nabighian M N.Macnae J C.Time domain electromagnetic prospecting methods[J].Electromagnetic Methods in Applied Geophysics,1991,2(6):427-520.

[48]王家映.地球物理反演理论[D].武汉:中国地质大学出版社,1998.

[49]邱长凯.时间域航空电磁法一维正反演研究[D].长春:吉林大学,2016.

[50]Siripunvaraporn W,Egbert G.Lenbury Y et al.Three dimensional magnetotelluricinversion:data-space method.[J].Physics of the Earth and Planetary Interiors,2005,150(1):3-140.

[51]Siripunvaraporn W,Egbert G.An efficient data space conjugate gradient Occam s method for three-dimensional magnetotelluric inversion[J].Geophysical Journal International,2011,18(6):567-579.

[52]Ellis R G,Oldenberg D W.The pole-pole 3D Dc-resistivity inverse problem:a conjugate gradient approach[J].Geophys.J.Int,1994,119(1):187-194.

[53]Farquharson C G,Oldenburg D W.A comparison of automatic techniques for estimating the regularization parameter in non—linear inverse problems[J].Geophys.J.Int,2004,156(3):411-425.

[54]AukenE,Christiansen A V.Layered and laterally constrained 2D inversion of resistivity data[J].Geopgysics,2004,69(3):752-761

[55]Santos F A M.1-D laterally constrained inversion of EM34 profiling data[J].Journal of applied Geopgysics,2004,56(2):123-134.

[56]Christiansen A V,Auken E.Optimizing a layered and larerally constrained 2S inversion of resistivity data using Broyden’s update and 1D derivatives[J].Journal of Applied Geophysics,2004,56(4):247-261.

[57]Auken E,Christiansen A V,Jacobsen Bo H,et al.Piecewise 1D laterally constrained inversion of resistivity data[J].Geophysics,2005,53(4):497-506.

[58]Triantafilis J,Santos F A M.Resolving the spatial distribution of the true electrical conductivity with depth using EM38 and EM31 signal data and a laterally constrained inversion model[J].Australian Journal of Soil Research,2010,48(5):434-446.

[59]杨云见,王绪本,何展翔.考虑关断时间效应的瞬变电磁一维反演[J].物探与化探,2005,29(3):234-236.

[60]王秀臣.基于人工神经网络的瞬变电磁反演解释及应用研究[D].西安:西北大学,2006.

[61]周道卿,谭捍东,王卫平.频率域航空电磁资料Occam反演研究[J].物探与化探,2006,30(2):162-165.

[62]翁爱华.Occam反演及其在瞬变电磁测深中的应用[J].地质与勘探,2007,43(5):74-76.

[63]张继令,翁爱华.中心回线瞬变电磁测深一维Occam反演[J].铁道勘察,2007,15(2):40-43.

[64]陈辉,邓居智,吕庆田,等.九瑞矿集区重磁三维约束反演及深部找矿意义[J].地球物理学报,2015,58(12):4478-4489.

[65]蔡晶,齐彦福,殷长春.频率域航空电磁数据的加权横向约束反演[J].地球物理学报,2014,57(3):953-960.

[66]殷长春,邱长凯,刘云鹤,等.时间域航空电磁数据加权横向约束反演[J].吉林大学学报(地球科学版),2016,46(1):254-261.

[67]侯彦威.TEM探测深部煤层上覆多电性层的OCCAM反演[J].煤田地质与勘探,2018,46(6):169-173.

[68]刘晓,郑芳文,宋双林,等.中心回线瞬变电磁法和直流电测深资料一维Occam联合反演[J].南昌工程学院学报,2019,38(6):115-118.

[69]白铭波,霍军鹏,雷鹏翔.TEM反演技术在浅埋煤层烧变岩水勘查中的应用[J].煤炭技术,2020,39(6):54-56.

[70]董毅.中心回线瞬变电磁全期视电阻率的计算研究[D].西安:西安科技大学,2017.

[71]陈明生,许洋鋮.对瞬变电磁测深几个问题的思考(三)——瞬变电磁场关断效应及全期视电阻率的普适算法[J].煤田地质与勘探,2017,45(4):131-134.

中图分类号:

 p631.3    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式