- 无标题文档
查看论文信息

论文中文题名:

 B4Cp、SiCp增强铝基复合材料的制备与性能研究    

姓名:

 王海涛    

学号:

 21211025009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0805    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 复合材料    

第一导师姓名:

 樊子民    

第一导师单位:

 西安科技大学    

第二导师姓名:

 唐明强    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Preparation and Performance Study of B4Cp and SiCp Reinforced Aluminum Matrix Composite Materials    

论文中文关键词:

 铝基复合材料 ; B4Cp ; SiCp ; 导热系数 ; 摩擦系数 ; 响应曲面法    

论文外文关键词:

 Aluminium matrix composites ; B4Cp ; SiCp ; thermal conductivity ; friction coefficient ; response surface methodology    

论文中文摘要:

B4Cp/SiCp增强Al基复合材料具有低密度、高硬、高耐磨性等优异性能,有望在航空航天、汽车制造等领域获得重要应用。但其存在制备工艺复杂、成本高等问题。本文以B4C与SiC颗粒为增强体,采用粉末冶金热压法制备了B4Cp/SiCp混杂增强铝基复合材料,研究了单一/混杂增强体对复合材料性能的影响并用响应曲面实验设计法,获得了最佳制备工艺参数。

SiC颗粒单一增强铝基复合材料研究结果表明,随着SiC含量增加,试样硬度先增加后降低,SiC含量为50%时,其硬度达最大值90HRB;SiC含量从0%增加到60%时,抗弯强度逐渐降低,由554MPa降至138MPa;试样热导率先增大后减小,SiC含量为30%时,热导率达到最大值324.05 W/(m·K);随着SiC含量增加,摩擦系数与磨损量先减小后增加,SiC含量为40%时,摩擦系数达最小值0.20,SiC含量为30%时,磨损量达最小值1.08×10-5g·m-1

混杂增强复合材料研究结果表明,随着B4C含量增加,试样密度逐渐降低,致密度先增加后降低,B4C含量为8%时,致密度达99.5%;硬度逐渐增大,当B4C含量为10%时,达81HRB;抗弯强度先增大后降低,B4C含量为8%时达472.41MPa;热导率逐渐降低,B4C含量为2%时,热导率185.10W/(m·K);摩擦系数与磨损量先减小后增加,B4C含量为8%时,其值分别为0.18与5.61×10-6 g·m-1

采用响应曲面法优化B4Cp/SiCp混杂增强复合材料工艺参数,研究结果表明,显著性:烧结温度×烧结温度>烧结温度>烧结温度×烧结压力>烧结压力>烧结压力×烧结压力>烧结时间;优化拟合出烧结温度557℃、烧结压力13MPa、烧结时间1.3min为最佳工艺参数并进行验证实验。此时试样硬度为90HRB,抗弯强度为573.3MPa,致密度99.8%,摩擦系数及磨损量下降为0.13与2.15×10-6g·m-1,热导率181.76W/(m·K),实验结果符合理论预测值,主要性能有所提升。

论文外文摘要:

B4Cp/SiCp reinforced Al matrix composites have excellent properties such as low density, high hardness and high wear resistance, which are expected to gain important applications in aerospace and automobile manufacturing. However, there are problems such as complicated preparation process and high cost. In this paper, B4C and SiC particles are used as reinforcement, and B4Cp/SiCp hybrid reinforced aluminum matrix composites are prepared by powder metallurgy hot pressing method, and the effect of single/hybrid reinforcement on the performance of the composites is investigated, and the optimal preparation parameters are obtained by using the design of experiments method for response surfaces.

The results of SiC particles single reinforced aluminum matrix composites show that, with the increase of SiC content, the hardness of the specimen first increases and then decreases, when the SiC content is 50%, its hardness reaches the maximum value of 90HRB; when the SiC content increases from 0% to 60%, the bending strength gradually decreases from 554MPa to 138MPa; the thermal conductivity of the specimen first increases and then decreases, when the SiC content of When the content of SiC is 30%, the thermal conductivity reaches the maximum value of 324.05 W/(m·K); with the increase of SiC content, the coefficient of friction and the amount of wear firstly decreases and then increases, when the content of SiC is 40%, the coefficient of friction reaches a minimum value of 0.20, and when the content of SiC is 30%, the amount of wear reaches a minimum value of 1.08×10-5g·m-1.

The research results of hybrid reinforced composites show that, with the increase of B4C content, the density of the specimen is gradually reduced, the density first increased and then reduced, when the B4C content of 8%, the density of 99.5%; the hardness of the specimen is gradually increased, when the B4C content is 10%, it reaches 81 HRB; the bending strength first increased and then reduced, when the B4C content of 8%, it reaches 472.41 MPa; the thermal conductivity gradually When the content of B4C is 2%, the thermal conductivity is 185.1W/(m·K); the friction coefficient and abrasion firstly decrease and then increase, and the values are 0.18 and 5.61×10-6 g·m-1 respectively when the content of B4C is 8%.

The response surface method was used to optimise the process parameters of B4Cp/SiCp hybrid reinforced composites, and the results showed that the significance: sintering temperature×sintering temperature>sintering temperature>sintering temperature>sintering temperature×sintering pressure>sintering pressure>sintering pressure>sintering pressure×sintering pressure>sintering time; the optimisation fitted the sintering temperature of 557℃, sintering pressure of 13MPa, and the sintering time of 1.3min as the best process parameters and Verification experiments. At this time, the hardness of the specimen is 90HRB, the flexural strength is 573.3MPa, the densification is 99.8%, the coefficient of friction and abrasion are reduced to 0.13 and 2.15×10-6g·m-1, the thermal conductivity is 181.76W/(m·K), and the experimental results are in line with the theoretical prediction and the properties are improved.

参考文献:

[1] Dyzia M. Aluminum matrix composite (AlSi7Mg2Sr0.03/SiCp) pistons obtained by mechanical mixing method[J]. Materials, 2017, 11(1): 42-47.

[2] Casati R, VedaniM. Metal Matrix Composites Reinforced by Nano-Particles-A Review[J]. MetalsOpen Access Metallurgy Journal, 2014, 4(1): 65-83.

[3] Arunkumar S, Sundaram M S, V igneshwara S. A review on aluminium matrix composite with various reinforcement particles and their behaviour[J]. Materials Today: Proceedings, 2020, 33: 484-490.

[4] Chak V, ChattopadhyayH, Dora T L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites[J]. Journalof manufacturing processes, 2020, 56: 1059-1074.

[5] Garg P, JamwalA, KumarD, et al. Advance research progresses in aluminium matrix composites: manufacturing & applications[J]. Journal of materials research and technology, 2019, 8(5): 4924-4939.

[6] 杨佳, 曹风江, 谭建波. 颗粒增强铝基复合材料的研究现状[J]. 铸造设备与工艺, 2017(5): 69-72.

[7] Sahin Y. Preparation and some properties of SiC particle reinforced aluminium alloy composites[J]. Materials & design, 2003, 24(8): 671-679.

[8] Samal P, Vundavilli P R, MeherA, et al. Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties[J]. Journal of Manufacturing Processes, 2020, 59: 131-152.

[9] 张琪, 王国军. 我国非连续增强铝基复合材料的研究及应用现状[J].轻合金加工技术, 2019, 47(5): 7.

[10] Zhang X N, GengL, Zheng Z Z, et al. Fabrication and evaluation of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles[J]. The Chinese Journal of Nonferrous Metals, 2004, 626: 220-228.

[11] Bahrami M, Nikoo M F, Givi M K B. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-OFSW joints prepared through two pas-ses[J]. Materials science and Engineering: A, 2015, 626: 220-228.

[12] 杨真, 卢德宏, 陈飞帆, 等. 纳/微米Al2O3颗粒混杂增强铝基复合材料的磨损性能[J]. 润滑与密封, 2011, 36(2): 87-91.

[13] Zhang J, LiuQ, YangS, et al. Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy[J]. Progress in Natural Science: Materials International, 2020, 30(2): 192-199.

[14] B G, W L, Zh Y, et al. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix[J]. Materials Characterization, 2019, 152(6): 265-275.

[15] 童攀, 林立, 王全兆, 等. 颗粒尺寸对B4C增强铝基中子吸收材料界面反应与力学性能的影响[J]. 复合材料学报, 2019, 036(004): 927-937.

[16] Hu J, ZhangJ, LuoG, et al. Effectively enhanced strength by interfacial reactions in insitu carbon reinforced Al matrix composites[J]. Vacuum, 2021, 188: 110-148.

[17] 齐海波, 曹振飞, 王玉乔, 等. 高速列车制动盘铸造组织及性能研究[C]//第十九届河北省铸造年会. 河北省机械工程学会河北省铸造行业协会, 2018: 51-57.

[18] 李富强. 离心铸造SiC颗粒增强铝基复合材料活塞的组织性能研究[D]. 重庆大学, 2009: 11-17.

[19] 苑高千, 张家莲, 李可琢, 等. 选区激光熔化制备(SiCp-B4Cp)/Al复合材料及其性能[J]. 硅酸盐学报, 2021, 49(12): 2563-2571.

[20] 王莲莲, 龙威, 周小平. 粉末冶金制备纯铝基复合材料的研究进展[J].热加工工艺, 2018, 47(18): 10-14.

[21] Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50(5): 1993-1998.

[22] Wang B, Janowski G M, Patterson B R. SiC particle cracking in powder metallurgy processed aluminum matrix composite materials[J]. Metallurgical & Materials Transactions A, 1995, 26(9): 2457-2467.

[23] Shen R, Wang D, Guo B, et al. Effects of particle size, extrusion and agingtimeonmicrostructure and hardness of SiC reinforced Al-Cu-Mg matrix composites[J]. Materials Science and Engineering of PowderMetallurgy, 2017,22(1): 26-32.

[24] Nassar A E, Nassar E E. Properties of aluminum matrix Nano composites preparedbypowder metallurgy processing[J]. Journal of King Saud University Engineering Sciences, 2015, 29(3): 295-299.

[25] 马国俊, 丁雨田, 金培鹏. 球磨工艺对Mg2B2O5w/6061Al基复合材料微观组织演变及力学性能的影响[J]. 稀有金属材料与工程, 2016(6): 1430-1436.

[26] 朱宸煜. SiCp增强高合金化7000系铝基复合材料的制备与组织性能研究[D]. 江苏大学, 2020: 27-35.

[27] Jza B, Q A, Sy A, et al. Microstructural evolution of hybrid aluminummatrixcomposites reinforced with SiC nanoparticles and graphene/graphite preparedbypowdermetallurgy[J]. Progress in Natural Science:Materials International, 2020, 30(2): 192-199.

[28] 黄培云. 粉末冶金原理第2版[M]//粉末冶金原理,第2版. 冶金工业出版社, 1982: 47-51.

[29] Surya M S, Nilesh T V. Synthesis and mechanical behaviour of (Al/SiC) functionally graded material using powder metallurgy technique[J]. Materials Today: Proceedings, 2019, 18: 3501-3506.

[30] Jiju K B, SelvakumarG, Prakash S R. Study on preparation of Al-SiC metal matrix composites using powder metallurgy technique and its mechanical properties[J]. Materials Today: Proceedings, 2020, 27: 1843-1847.

[31] 艾江, 康永. 粉末冶金法SiCp/Al复合材料的制备研究[J]. 陶瓷, 2017(07): 30-36.

[32] 茅学志, 洪雨, 张玉君, 等. 粉末冶金制备50%SiCp/Al复合材料的结构及性能[J]. 中国有色金属学报, 2017, 27(12): 2493-2500.

[33] Ma G, Zhu S, Wang D, et al. Effect of heat treatment on microstructure, mechanical properties, and fracture behaviors of ultra-high strength SiC/Al-Zn-Mg-Cu composite[J]. Inter-national Journal of Minerals, 2024: 127210.

[34] Zheng R, Yang H, Liu T, et al. Micro-structure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass pa-rticles[J]. Materials & Design, 2014, 53(1): 512-518.

[35] 段状正, 游志勇, 蒋傲雪, 等. 热处理对挤压铸造SiCp/ZL101铝基复合材料组织与性能的影响[J]. 特种铸造及有色合金, 2021, 41(06): 684-688.

[36] 武高辉, 张云鹤, 修子扬, 等. 碳纤维增强铝基复合材料及其成型技术研究进展[C]/大型飞机关键技术高层论坛暨中国航空学会年会. 2007: 563-567.

[37] 修子扬, 张强, 王子鸣, 等. 电子封装用SiCp/6063复合材料的制备与性能研究[J]. 精密成形工程, 2018, 10(01): 91-96.

[38] 刘瑞峰, 王文先, 赵威. 微/纳B4C增强6061Al复合材料微观结构及力学性能[J]. 复合材料学报, 2021, 038(010): 3394-3401.

[39] 袁战伟. 15vol.%SiCp/Al复合材料变形行为基础研究[D]西北工业大学, 2014: 16-25.

[40] 潘利文, 唐景凡, 林维捐, 等. 固-液原位反应法制备铝基复合材料的研究进展[J]. 材料导报, 2015, 29(15): 1-4.

[41] 张波, 陈伟, 吴广新. SiC含量对铝基复合材料组织与力学性能的影响[J].上海金属, 2020, 42(04): 44-49.

[42] 陈诚诚, 张文达, 卫振华, 等. SiC-Al3Ti协同增强7075铝基复合材料搅拌工艺优化研究[J]. 铸造技术, 2019, 40(04): 360-364.

[43] Poovazhagan Lakshmanan, Ravanneswarran G.R., Sanjai S., Kumanan G. Examining the abrasive wear properties of LM22 aluminum alloy reinforced with SiC and B4C nanoparticles[J]. Materials Today: Proceedings, 2022, 62(2): 589-594.

[44] 郑振兴, 朱德智. 喷射共沉积SiC/2024铝基复合材料轧板的显微组织及力学性能[J]. 期刊论文, 2017, 41(4): 1-2.

[45] 庄伟彬, 田宗伟, 刘广柱, 等. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.

[46] 陈存, 怯喜周, 陈刚, 等. 累积叠轧对原位ZrB2/6082Al复合材料组织和力学性能的影响[J]. 热加工工艺, 2017, 46(05): 36-40+44.

[47] Chen G Q, Xiu Z Y, Meng S H, et al. Thermal expansion and mechanical properties of high reinforcement content SiCp/Cu composites fabricated by squeeze casting technology[J]. 中国有色金属学会会刊: 英文版, 2009, 6(S3): 5-6.

[48] 范才河, 何文静, 胡泽艺, 等. 喷射成形(SiCp+β-LiAlSiO4/6092Al基复合材料的界面结构及性能[J]. 中国有色金属学报: 英文版, 2023, 33(4): 1029-1037.

[49] 黎常浩, 陈振华, 陈鼎, 等. 喷射沉积SiCp/Al-20Si复合材料高周疲劳行为研究[J]. 机械工程学报, 2012, 48(10): 40-44.

[50] 卢健, 吴卿永, 张鹭, 等. 2024/SiCp铝基复合材料薄板的制备方法研究[J].世界有色金属, 2019(16): 39-41.

[51] 李微, 安帅朋, 杨蕾, 等. SiC颗粒尺寸对喷射沉积铝硅复合材料高温疲劳性能的影响[J]. 材料热处理学报, 2021, 42(01): 34-43.

[52] Adamu M, Ayeni K O, HarunaI, et al. Durability performance of pervious concrete containing rice husk ash and calcium carbide: A response surface methodology approach[J]. Case Studies in Construction Materials, 2021, 4(e00547): 1-13.

[53] 边鹏博, 朱士泽, 张峻凡, 等. 无压烧结温度对15%SiC/2009Al 复合材料微观组织与力学性能的影响[J]. 材料工程, 2024, 52(5): 76-82.

[54] 崔岩, 董和谦, 曹雷刚, 等. 55%SiCp/2024Al复合材料时效过程的微观组织与力学性能[J]. 金属热处理, 2022, 47(01): 142-148.

[55] 李书志, 王铁军, 刘桂荣, 等. 热等静压法制备SiCp/Al复合材料的组织及性能研究[J]. 粉末冶金工业, 2018, 28(03): 29-33.

[56] 武庆杰. SiC/Al基复合材料界面的显微结构及第一性原理研究[D]. 郑州大学, 2019: 54-55.

[57] Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties[J]. Materials Science and Engineering: A, 2016, 660(2): 84-96.

[58] 王军, 王俊, 王应, 等. 原位合成Al2O3/TiB2颗粒混杂增强铝基复合材料的性能研究[J/OL]. 纺织高校基础科学学报, 2024: 1-10.

[59] 李建宇, 吕书林, 陈露, 等. 挤压铸造压力对超声辅助成形纳米SiCp/Al-Cu复合材料颗粒分布与力学性能的影响(英文)[J]. Transactions of Nonferrous Metals Society of China, 2023(7): 1977-1987.

[60] 陈亚西, 关丽娜, 刘春秋. 热挤压温度对混杂增强铝基复合材料的性能及结构影响[J]. 喀什大学学报, 2021, 42(06): 47-52.

[61] 金延文, 曲彦平, 王东等. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(03): 334-343.

[62] 沈君剑, 刘允中, 欧阳盛等. 激光选区熔化成形TiB2与SiC颗粒混杂增强铝基复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与程, 2020, 25(03):251-259.

[63] 高红霞, 王蒙, 樊江磊, 等. 微/纳米双尺度混杂颗粒增强铝基复合材料的制备工艺[J]. 有色金属工程, 2019, 9(09): 87-92.

[64] 许志月. 搅拌铸造(SiCp+SiCw)/Al复合材料热挤压组织与性能研究[D]. 哈尔滨工业大学, 2021: 40-57.

[65] Pul M. Effect of sintering on mechanical property of SiC/B4C reinforced aluminum[J]. Materials Research Express, 2018, 6(1): 16-25.

[66] Das S, Samanta S, Kayaroganam P. Fabrication and tribological study of AA6061 hybrid metal matrix composites reinforced with SiC/B4C nanoparticles[J]. Industrial Lubrication and Tribology, 2019, 71(1): 83-93.

[67] Bharathi P, Kumar T S. Mechanical characteristics and wear behaviour of Al/SiC and Al/SiC/B4C hybrid metal matrix composites fabricated through powder metallurgy route[J]. Silicon, 2023, 15(10): 4259-4275.

[68] Jiang D, Yu J. Simultaneous refinement and modification of the eutectic Si in hypoeutectic Al-Si alloys achieved via the addition of SiC nanoparticles ScienceDirect[J]. Journal of Materials Research and Technology, 2019, 8(3): 2930-2943.

[69] 兖利鹏, 王爱琴, 谢敬佩, 等. SiC含量对SiC/6061Al基复合材料性能的影响[J]. 粉末冶金工业, 2013, 23(05): 30-34.

[70] L L, N B, Bi Y, et al. Advancements in SiC-Reinforced Metal Matrix Com-posites for High-Performance Electronic Packaging: A Review of Thermo-Mechanical Properties and Future Trends[J]. Micromachines, 2023, 14(8): 1491-1492.

[71] 修子扬, 张强, 武高辉, 等. 高体积分数电子封装用铝基复合材料性能研究[J]. 电子与封装, 2006, 1(02): 16-19.

[72] N P, B A, E O A, et al. Improved ductility of spark plasma-sintered aluminium-carbon nanotube composite through the addition of titanium carbide microparticles[J]. Materials Science and Engineering: A, 2020, 795: 139959.

[73] Wu J, Li Z, Luo Y, et al. The effects of double ceramic particles (B4C-SiC) on the performance, microstructure, and friction-wear mechanisms of copper-based PM[J]. Tribology International, 2022, 175: 107865.

[74] 喇培清, 许广济, 丁雨田. 高体积分数SiCp/Al复合材料中界面现象研究[J]. 材料工程, 1997, 1(09): 28-30+49.

[75] S A, I A, Abdallah A W. Fabrication and evaluation of tribological properties of Al2O3 coated Ag reinforced copper matrix nano-composite by mechanical alloying[J]. Journal of Asian Ceramic Societies, 2020, 8(4): 1228-1238.

[76] B N, L A, FerriolM, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28.

[77] R, T. pratheep, kishore, T. jaya, theja, P. charan, et al. Development and wear behavior investigation on aluminum-7075/B4C/fly ash metal matrix composit-es[J]. Advanced composites and hybrid materials, 2020, 3(2): 255-265.

[78] I A, K H, H K. The dependence of the transition from severe to mild wear on load and surface roughness when the oxide particles are supplied before sliding[J]. Wear, 1990, 139(2): 319-333.

[79] A, E P. Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites[J]. Composites Part B: Engineering, 2013: 146-152.

[80] Z J, Y H. Fabrication of an A356/fly-ash-mullite interpenetrating composite and its wear properties[J]. Ceramics International, 2017, 43(15): 12996-13003.

[81] Iwabuchi A, Hori K, Kubosawa H. The effect of oxide particles supplied at the interface before sliding on the severe-mild wear transition[J]. Wear, 1988, 128(2): 123-137.

[82] Berthier Y, VincentL, Godet M. Fretting fatigue and fretting wear[J]. Tribology international, 1989, 22(4): 235-242.

中图分类号:

 TB333    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式