- 无标题文档
查看论文信息

题名:

 铜基复合纳米流体热管移热防治煤自燃的效能研究    

作者:

 孙璐    

学号:

 21220226170    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 工业火灾与爆炸防控    

导师姓名:

 罗振敏    

导师单位:

 西安科技大学    

第二导师姓名:

 刘博    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-01    

外文题名:

 Research on the effectiveness of copper based composite nanofluid heat pipe in preventing coal spontaneous combustion through heat transfer    

关键词:

 煤自燃 ; 复合纳米流体 ; CuO/MgO/Al2O3 ; 导热系数    

外文关键词:

 Coal fire ; Hybrid nanofluids ; CuO/MgO/Al2O3 ; Thermal conductivity    

摘要:

煤自燃灾害防治是安全领域重要研究课题之一。双碳战略下,纳米流体热管移热技术通过相变在冷凝段移热干扰煤氧化蓄热自燃,同时实现煤自燃废热提取利用,具有重要研究价值。前期研究发现含铜的金属氧化物纳米流体可有效提高热管移热效率,但高稳定性,高移热效率铜基氧化物复合纳米流体可控制备难以实现,纳米流体的物性参数影响因素不明,煤自燃过程中纳米流体与热管之间的相互影响尚不清楚,需要进一步展开研究。本文制备了新型具有高稳定性传热性能好的CuO/MgO/Al2O3复合纳米流体,对其导热系数等物性参数进行探讨,并将其作为热管工质开展煤堆自燃移热效能实验研究,为煤火灾害防治提供新思路。本文的研究内容主要包括:

(1)采用前驱体焙烧法制备得到铜基金属氧化物纳米颗粒,通过超声分散-表面改性耦合技术制备出不同质量分数(0.1%、0.5%、0.8%、1.0%和1.5%),不同基液(水、乙二醇)的CuO/MgO/Al2O3复合纳米流体。通过沉降实验与Zeta电位分析等实验测试手段,定性定量研究纳米流体的悬浮稳定性,结果表明:纳米流体具有良好的悬浮稳定性。制备的CuO/MgO/Al2O3纳米流体在静置5天后无明显沉降现象;Zeta电位测试值均>30 mV。

(2)采用导热系数测试、粘度测试、表面张力测试等实验手段对纳米流体的物性参数开展研究,结合Merit数筛选并确定最优性能的纳米流体。结果表明:基液(水,乙二醇)的导热系数最大分别增加了15.1%和24.0%;在T为20 ℃和100 ℃时,基液(水,乙二醇)的粘度分别降低了47.3%和56.7%,水基纳米流体的表面张力最大下降了21.0%,乙二醇基纳米流体的表面张力最大下降了24.6%。此外,纳米流体的接触角随质量分数增大有所增加,随分散剂的添加有所减小。

(3)实验研究了纳米流体工质不同充液率及热管布置倾角对煤堆效能的影响。实验表明,当工质充液率为30%、热管布置倾角为60°时,1.5%CuO/MgO/Al2O3-H2O纳米流体煤堆移热效能最好,其与纯水热管相比,煤堆上部、中部与下部降温值提升了6.2%、42.8%和7.9%。与市面常见的CuO纳米流体相比,煤堆内部降温值分别提高了9.8%、9.7%和8.3%。表明CuO/MgO/Al2O3-H2O纳米流体移热效能显著。

外文摘要:

The prevention and control of coal spontaneous combustion disasters is one of the important research topics in the field of safety. Under the dual carbon strategy, the heat transfer technology of nanofluid heat pipes interferes with coal oxidation, thermal storage, and spontaneous combustion through phase change in the condensation section, while achieving the extraction and utilization of waste heat from coal spontaneous combustion, which has important research value. Previous studies have found that metal oxide nanofluids containing copper can effectively improve the heat transfer efficiency of heat pipes, but high stability and high heat transfer efficiency make it difficult to control the preparation of copper based oxide composite nanofluids. The factors affecting the physical properties of nanofluids are unclear, and the mutual influence between nanofluids and heat pipes during coal spontaneous combustion is still unclear. Further research is needed. This article prepares a new type of CuO/MgO/Al2O3 composite nanofluid with high stability and good heat transfer performance, explores its thermal conductivity and other physical properties parameters, and uses it as a heat pipe working fluid to conduct experimental research on the heat transfer efficiency of coal pile spontaneous combustion, providing new ideas for coal fire disaster prevention and control. The research content of this article mainly includes:

(1) Copper based metal oxide nanoparticles were prepared by precursor calcination method, and CuO/MgO/Al2O3 composite nanofluids with different mass fractions (0.1%, 0.5%, 0.8%, 1.0%, and 1.5%) and different base liquids (water, ethylene glycol) were prepared by ultrasonic dispersion surface modification coupling technology. Through sedimentation experiments and Zeta potential analysis, the suspension stability of nanofluids was qualitatively and quantitatively studied. The results showed that nanofluids have good suspension stability. The prepared CuO/MgO/Al2O3 nanofluid showed no significant sedimentation after 5 days of standing; The Zeta potential test values are all greater than 30 mV.

(2) Experimental methods such as thermal conductivity testing, viscosity testing, and surface tension testing were used to study the physical properties of nanofluids, and the Merit number was used to screen and determine the optimal performance of nanofluids. The results showed that the thermal conductivity of the base solution (water, ethylene glycol) increased by 15.1% and 24.0%, respectively; At temperatures of 20 ℃ and 100 ℃, the viscosity of the base solution (water, ethylene glycol) decreased by 47.3% and 56.7%, respectively. The surface tension of water-based nanofluids decreased by a maximum of 21.0%, while the surface tension of ethylene glycol based nanofluids decreased by a maximum of 24.6%. In addition, the contact angle of the nanofluid increases with the increase of mass fraction and decreases with the addition of dispersant.

(3) The experimental study investigated the effects of different filling rates of nanofluid working fluids and the inclination angle of heat pipe arrangement on the efficiency of coal piles. Experiments have shown that when the filling rate of the working fluid is 30% and the inclination angle of the heat pipe arrangement is 60 °, the heat transfer efficiency of the 1.5% CuO/MgO/Al2O3-H2O nanofluid coal stack is the best. Compared with pure water heat pipes, the cooling values of the upper, middle, and lower parts of the coal stack have increased by 6.2%, 42.8%, and 7.9%. Compared with the common CuO nanofluids on the market, the internal cooling value of coal piles has increased by 9.8%, 9.7%, and 8.3%, respectively. The surface CuO/MgO/Al2O3-H2O nanofluid exhibits significant heat transfer efficiency.

参考文献:

[1] 张志军. “双碳”背景下我国地下煤火防治技术研究进展[J]. 中国煤炭地质, 2023,35(1):39-42.

[2] Wang K, Guo L, Zhai X, et al. Hydrogen abstraction reaction mechanism of oil-rich coal spontaneous combustion[J]. Fuel, 2024,367:131538.

[3] 秦波涛, 马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战[J]. 煤炭学报:1-18.

[4] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021,49(1):66-99.

[5] Wang Q, Yang L, Zhao N, et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection[J]. Applied Thermal Engineering, 2023,219:119476.

[6] Liang H, Wang T, Luo Z, et al. Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors[J]. Fuel, 2024,356:129595.

[7] Choi S U S. Nanofluids: From Vision to Reality Through Research[J]. Journal of Heat Transfer, 2009,131(3).

[8] Abdullatif Alshuhail L, Shaik F, Syam Sundar L. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications – A review[J]. Alexandria Engineering Journal, 2023,68:365-404.

[9] Pandey H, Kumar Gupta N. A descriptive review of the thermal transport mechanisms in mono and hybrid nanofluid-filled heat pipes and current developments[J]. Thermal Science and Engineering Progress, 2022,31:101281.

[10] 余畅.镁铝类水滑石及其改性材料对水中Cr(Ⅵ)的吸附性能研究[D]. 南宁: 广西大学,2022.

[11] 张颜萍.含铜类水滑石催化剂的制备、表征和催化性能研究[D]. 呼和浩特: 内蒙古师范大学, 2016.

[12] 余志.含铜类水滑石基催化剂结构调控及其5-HMF选择性加氢性能研究[D]. 北京:北京化工大学, 2019.

[13] 张广杰, 芦晓伟, 王文. 自燃煤层沿空留巷采空区遗煤自燃规律及防控技术研究[J]. 煤炭技术, 2023,42(4):108-113.

[14] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020,30(3):303-311.

[15] 史全林, 秦波涛. 防治煤自燃的弹性水凝胶形成机理及特性研究[J]. 中国矿业大学学报, 2022,51(6):1106-1116.

[16] Sodium Compounds; Studies from China University of Mining and Technology Have Provided New Information about Sodium Compounds (Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor)[J]. Chemicals & Chemistry, 2019.

[17] Fuel Research; Studies from Shandong University of Science and Technology Yield New Data on Fuel Research (A Novel Fire Prevention and Control Plastogel To Inhibit Spontaneous Combustion of Coal: Its Characteristics and Engineering Applications)[J]. Energy & Ecology, 2020.

[18] Haiyan W, Jinglei L, Zhihuizi D, et al. Effect of thermal damage on the pore–fracture system during coal spontaneous combustion[J]. Fuel, 2023,339.

[19] Rongkun P, Cong L, Jiangkun C, et al. Thermal properties and microstructural evolution of coal spontaneous combustion[J]. Energy, 2023,262(PA).

[20] 徐礼华. 煤垛热管降温的实验研究[J]. 能源研究与利用, 1991(2):11-15.

[21] 程方明, 常助川, 李贝, 等. 基于热棒降温技术的自燃煤堆热迁移行为数值模拟[J]. 西安科技大学学报, 2019,39(04):581-588.

[22] 孟曦.煤火重力热管提热性能优化及预测研究[D]. 西安: 西安科技大学, 2021.

[23] 叶星星.L型热虹吸器强化煤火热能移取性能研究[D]. 西安: 西安科技大学, 2022.

[24] Grid. S O S S, Shaanxi Key Laboratory Of Prevention And Control Of Coal Fire X A S C, Grid. S O S S, et al. Numerical evaluation of inclined heat pipes on suppressing spontaneous coal combustion[J]. Heat and Mass Transfer: Wärme- und Stoffübertragung, 2020,56(1):1861-1874.

[25] 韩涛.表面横向风流作用下松散煤体高温区域演化规律研究[D]. 西安: 西安科技大学, 2022.

[26] 任瑶.基于毛细芯热管移热的煤堆自燃热迁移特征研究[D]. 西安:西安科技大学, 2022.

[27] 马欣, 谢容宇, 孟曦, 等. 多工况条件下重力热管提热性能优化研究[J]. 煤矿安全, 2022,53(2):53-58.

[28] 刘鑫, 任万兴, 石晶泰. 导热棒提取松散高温介质内部热量的实验研究[J]. 煤矿安全, 2021,52(2):48-53.

[29] Neeraj C, Rakesh B. Effect of particle size and concentration on thermal performance of cylindrical shaped heat pipe using silver-DI water nanofluid[J]. International Journal of Ambient Energy, 2023,44(1):305-316.

[30] Gupta N K, Tiwari A K, Ghosh S K. Heat transfer mechanisms in heat pipes using nanofluids – A review[J]. Experimental Thermal and Fluid Science, 2018,90:84-100.

[31] Heris S Z, Mohammadpur F, Shakouri A. Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids[J]. Materials Research Bulletin, 2014,53:21-27.

[32] Huminic G, Huminic A, Dumitrache F, et al. Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study[J]. Powder Technology, 2020,367:347-357.

[33] Aguilar T, Carrillo-Berdugo I, Martínez-Merino P, et al. Improving stability and thermal properties of TiO2-based nanofluids for concentrating solar energy using two methods of preparation[J]. Journal of Thermal Analysis and Calorimetry, 2021,144(3):895-905.

[34] Changhui L, Yu Y, Wenjie S, et al. Preparation and thermophysical study on a super stable copper oxide/deep eutectic solvent nanofluid[J]. Journal of Molecular Liquids, 2022,356.

[35] Sharma B, Sharma S K, Gupta S M, et al. Modified Two-Step Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications[J]. Arabian Journal for Science and Engineering, 2018,43(11):6155-6163.

[36] 夏国栋, 刘冉, 杜墨. 纳米流体导热系数影响因素分析[J]. 北京工业大学学报, 2016,42(08):1252-1258.

[37] 吴俊杰, 马丽, 侯竣升, 等. 复合纳米流体强化换热研究进展[J]. 工程科学学报, 2024,46(05):937-948.

[38] Lee J H, Kam D H, Jeong Y H. The effect of nanofluid stability on critical heat flux using magnetite-water nanofluids[J]. Nuclear Engineering and Design, 2015,292:187-192.

[39] 贾朝富, 邢美波, 张洪发, 等. 高稳定水基MWCNT-Fe3O4磁性纳米流体的制备研究[J]. 功能材料, 2021,52(11):11023-11030.

[40] Sardarabadi H, Heris S Z, Ahmadpour A, et al. Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application[J]. Energy Conversion and Management, 2019,188:321-332.

[41] Choudhary R, Khurana D, Kumar A, et al. Stability analysis of Al2O3/water nanofluids[J]. Journal of Experimental Nanoscience, 2017,12(1):140-151.

[42] Nabil M F, Azmi W H, Hamid K A, et al. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture[J]. International Communications in Heat and Mass Transfer, 2017,86:181-189.

[43] 邵雪峰, 陈颖, 莫松平, 等. TiO2-H2O混合纳米流体的稳定性[J]. 功能材料, 2016,47(02):2247-2252.

[44] Dhinesh Kumar D, Valan Arasu A. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids[J]. Renewable and Sustainable Energy Reviews, 2018,81:1669-1689.

[45] 郭文杰, 翟玉玲, 陈文哲, 等. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023,42(05):2315-2324.

[46] 马明琰.混合纳米流体热物性及对流换热特性实验研究[D]. 昆明: 昆明理工大学, 2021.

[47] Suresh S, Venkitaraj K P, Selvakumar P, et al. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011,388(1):41-48.

[48] Mingyan M, Yuling Z, Peitao Y, et al. Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids[J]. Powder Technology, 2020(prepublish).

[49] Kumar D D, Arasu A V. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids[J]. Renewable and Sustainable Energy Reviews, 2018,81:1669-1689.

[50] Aparna Z, Michael M, Pabi S K, et al. Thermal conductivity of aqueous Al2O3/Ag hybrid nanofluid at different temperatures and volume concentrations: An experimental investigation and development of new correlation function[J]. Powder Technology, 2019,343:714-722.

[51] Munkhbayar B, Tanshen M R, Jeoun J, et al. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics[J]. Ceramics International, 2013,39(6):6415-6425.

[52] Han W S, Rhi S H. Thermal Characteristics of Grooved Heat pipe with Hybrid Nanofluids[J]. Thermal Science, 2011,15(1):195-206.

[53] Borhan M S, Saeed Z H, Patrice E. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study[J]. Fuel, 2021,293.

[54] 张迎.MWCNT-TiO2/H2O二元纳米流体稳定性及热物性的实验研究[D]. 昆明: 昆明理工大学,2022.

[55] Bobbo S, Fedele L, Benetti A, et al. Viscosity of water based SWCNH and TiO2 nanofluids[J]. Experimental Thermal and Fluid Science, 2011,36(1):65-71.

[56] Moldoveanu G M, Minea A A, Iacob M, et al. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid[J]. Thermochimica Acta, 2018,659:203-212.

[57] 马鹏飞.铜基水滑石催化剂制备及氢解高浓度纤维素性能[D]. 大连: 大连理工大学, 2016.

[58] 季勇, 朱晨光. 过渡金属氧化物对气溶胶灭火剂燃烧性能的影响研究[J]. 火工品, 2024(1):87-90.

[59] Penke Y K, Anantharaman G, Ramkumar J, et al. Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation[J]. Journal of Hazardous Materials, 2019,364:519-530.

[60] 朱洪涛, 焦寿昌. 铜镁铝类水滑石的合成及其催化性能研究[J]. 山东化工, 2015,44(19):15-17.

[61] Kumar P A, Reddy M P, Ju L K, et al. Low temperature propylene SCR of NO by copper alumina catalyst[J]. Journal of Molecular Catalysis. A, Chemical, 2008,291(1):66-74.

[62] Zhao B, Yi H, Tang X, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chemical Engineering Journal, 2016,286:585-593.

[63]Liu B, Sun L, Luo Z, et al. Experimental investigation of thermophysical properties of synthesized Mg–Al bimetal oxide/water nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2024.

[64] 汪靖凯, 赵蕾, 马丽斯. Cu/Al纳米流体的制备及导热性能[J]. 应用化工, 2021,50(3):620-624.

[65] Zolfalizadeh M, Zeinali Heris S, Pourpasha H, et al. Experimental Investigation of the Effect of Graphene/Water Nanofluid on the Heat Transfer of a Shell-and-Tube Heat Exchanger[J]. International Journal of Energy Research, 2023,2023:3477673.

[66] 王睿, 沈学峰, 霍元平, 等. 纳米流体液滴撞击固体壁面的实验和模拟研究[J]. 中国科学院大学学报, 2020,37(2):281-287.

中图分类号:

 TD752.2    

开放日期:

 2026-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式