- 无标题文档
查看论文信息

论文中文题名:

 柠条塔井田南翼侏罗系含水层沉积控水规律与富水性预测研究    

姓名:

 候静毅    

学号:

 22209071014    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081801    

学科名称:

 工学 - 地质资源与地质工程 - 矿产普查与勘探    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿井水害防治    

第一导师姓名:

 侯恩科    

第一导师单位:

 西安科技大学    

第二导师姓名:

 蔡玥    

论文提交日期:

 2025-06-23    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Study on sedimentary water-control law of Jurassic aquifer and prediction of water-bearing properties of aquifer in the southern flank of Ningtiaota minefield    

论文中文关键词:

 沉积控水 ; 沉积相分析 ; 富水性预测 ; KDE-Bayes判别    

论文外文关键词:

 sedimentation control ; Sedimentary phase analysis ; Prediction of water-bearing properties    

论文中文摘要:

柠条塔井田位于陕北侏罗纪煤田神府矿区南部,煤层开采过程主要受到上覆延安组 与直罗组含水层的影响,不同沉积位置其富水性差异较大。以柠条塔井田南翼为研究对 象,以沉积学、岩石学、水文地质学等学科理论为指导,结合钻孔资料、测井曲线、岩 心分析和实验数据,分析了直罗组、延安组含水层的沉积特征极其对富水性的影响,系 统总结了沉积控水规律,通过多因素综合评价方法开展了富水性分区预测。研究结果对 于煤矿防治水工作具有重要的理论价值及实践参考意义。 柠条塔井田南翼直罗组为河流相沉积,延安组为三角洲相沉积,延安组和直罗组含 水层展布受到沉积相带的明显控制,平面上均呈北东-南西向条带状展布,纵向上为分流 河道砂体与分流间湾、河道砂坝与河漫滩的相互叠置。风化基岩含水层的富水性受沉积 作用和后期风化作用的双重控制,而正常基岩含水层富水性则主要受控于沉积环境。铸 体薄片分析和核磁共振实验结果表明,不同沉积微相的含水层砂岩空隙结构差异显著, 粒间孔、溶蚀孔和微裂隙的发育程度直接决定砂岩的持水能力,并进一步影响富水性。 不同微相中,河口坝微相的富水能力最强,天然堤微相的富水能力最弱。 采用基于核密度估计的 Bayes(KDE-Bayes)判别模型对风化基岩的富水性进行了 预测,模型的总体正判率达到100%,明显优于传统朴素Bayes判别模型。强富水区主 要分布在S1210工作面附近,集中在井田南部;中等富水性区大面积连续分布于研究区 中部;弱富水区和极弱富水区主要分布在研究区北部。模型预测结果与实际抽水试验数 据和井下疏放水资料相吻合。 采用层次分析法(AHP)对正常基岩的富水性进行了预测,2-2煤和3-1煤上覆正常 基岩的富水性大部分区域处于弱到极弱之间,仅有极小部分区域为中等富水性,AHP模 型的预测结果具有较高的可靠性,模型预测结果与实际抽水试验数据吻合。

论文外文摘要:

Ningtiaota minefield is located in the southern part of Shenfu mine area in the Jurassic coal field of northern Shaanxi province, and the coal mining process is mainly affected by the overlying Yan'an Formation and Zhi Luo Formation aquifers, and their water-bearing properties vary greatly in different depositional locations. Taking the south wing of Ningtiaota minefield as the research object, guided by the theories of sedimentology, petrology, hydrogeology and other disciplines, and combining the drilling data, logging curves, core analysis and experimental data, we analysed the depositional characteristics of Zhi Luo and Yan'an Group aquifers, and their influence on water-bearing properties, summarised the law of depositional water-control, constructed the depositional water-control model, and carried out the prediction of water-bearing properties through the multi-factor comprehensive evaluation method. The results of the study have important theoretical value and practical reference significance for coal mine water control work.

The southern wing of Ningtiaota minefield, Zhiluo Formation is fluvial deposition, and Yan'an Formation is deltaic deposition. The spreading of aquifers in Yan'an Formation and Zhiluo Formation is controlled by the sedimentary zones, and the aquifers are spreading in a strip-like manner from north-east to south-west, and vertically, they are superimposed on each other by the diversion sand body and the diversion interbay, and the sand dams of the river and river rambling beach. The water-bearing properties of the weathered bedrock aquifer are controlled by both sedimentation and later weathering, while the water-bearing properties of the normal bedrock aquifer are mainly controlled by the depositional environment. The results of cast thin-section analyses and nuclear magnetic resonance experiments show that there are significant differences in the void structures of the sandstones of aquifers with different sedimentary microphases, and the development degree of intergranular pores, dissolution pores, and microfissures directly determines the water-holding capacity of the sandstones, and further affects the water-bearing properties. Among the different microphases, the estuarine dam microphase has the strongest water-enrichment capacity, and the natural dike microphase has the weakest water-enrichment capacity.

The water-bearing properties of weathered bedrock were predicted using the Kernel Density Estimation-based Bayes (KDE-Bayes) discriminant model, and the overall positive rate of the model reached 100%, which was significantly better than that of the traditional plain Bayes discriminant model. The strong water-bearing properties are mainly distributed near the S1210 working face and concentrated in the southern part of the wellfield; the medium water-bearing properties are continuously distributed in the central part of the study area over a large area; and the weak and very weak water-bearing properties are mainly distributed in the northern part of the study area. The results of the model prediction are highly consistent with the actual pumping test data and downhole water evacuation and discharge data.

The water-bearing properties of the normal bedrock were predicted by the hierarchical analysis method (AHP), and most of the water-bearing properties of the overlying normal bedrock of the 2-2 coal and the 3-1 coal are between weak and very weak, and only a small part of the areas are moderately water-bearing properties.The prediction results of the AHP model are highly reliable, which provide a scientific basis for the water-bearing properties zoning of the normal bedrock.

参考文献:

[1]武强,涂坤,曾一凡.“双碳”目标愿景下我国能源战略形势若干问题思考[J].科学通报,2023,68(15):1884-1898.

[2]Li Z, Wang D, Lv D, et al. The geologic settings of Chinese coal deposits[M]//Coal Geology of China. Routledge, 2020: 18-48.

[3]王佟,刘峰,赵欣等.“双碳”背景下我国煤炭资源保障能力与勘查方向的思考[J/OL].煤炭科学技术,1-8[2024-01-05]*

[4]赵大伟.关于煤矿水害事故及水文地质工作的思考[J].内蒙古煤炭经济,2023(22):172-174.

[5]徐斌,祁荣荣,尹尚先等.我国煤矿水害重特大事故相关因素特征分析及防治对策[J].煤矿安全,2023,54(05):13-19.

[6]曾一凡,武强,赵苏启等.我国煤矿水害事故特征、致因与防治对策[J].煤炭科学技术,2023,51(07):1-14.

[7]洪益青,祁和刚,丁湘等.蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J].中国煤炭地质,2017,29(12):55-58+62.

[8]赵宝峰.基于含水层沉积和构造特征的富水性分区[J].中国煤炭地质,2015,27(04):30-34.

[9]冯洁,侯恩科,王苏健等.陕北侏罗系砂岩沉积控水规律研究[J].采矿与安全工程学报,2022,39(03):546-556

[10]张世杰. 沧东—南皮凹陷孔—段枣Ⅲ油层组物源与沉积相研究[D].成都理工大学,2013.

[11] Anais Pages, Susanne Schmid. 2016. Euxinia linked to the Cambrian Drumian carbon isotope excursion(DICE ) in Australia: Ueochemical and chemostratigraphic evidence[J]. Palaeogeography , Palaeoclimatology, Palaeoecology , 343.

[12]Miall A D.Architectural-element analysis:a new method of facies analysis applied to fluvial deposits[J].Earth Science Reviews,1985,22 (5): 261-308.

[13]吴胜和,岳大力,冯文杰,等.碎屑岩沉积构型研究若干进展[J].古地理学报,2021,23(2):18.

[14]Reading HG.Sedimentary Environments and Facies(2nd ed).Oxford:Blackwell Scientific Publica-tions, 1986.

[15]Plint A G.Sedimentary Facies Analysis. IAS Special Publication 22. London: Blackwell ScienceLtd, 1995.

[16]王金荣,刘洪涛.测井沉积微相识别方法及应用[J].大庆石油学院学报,2004(04):18-20+110.

[17]顿都,尼玛次仁,吕登凯等.西藏尼玛县阿索东地区早白垩世郎山组沉积环境及沉积微相分析[J].西藏科技,2023,45(07):25-29+47.

[18]雷晓虹,尹太举,赵红静等.基于高斯混合模型的粒度数据分析新方法及沉积相应用[J].科学技术与工程,2023,23(34):14516-14524.

[19]王凯,刘东成,刘华峰等.基于FCM算法的多属性分析技术在河道砂体精细刻画中的应用——以西湖凹陷T气田为例[J].海洋地质前沿,2023,39(09):55-67.

[20]尹楠鑫,张吉,李存贵等.改进的基于目标的高精度沉积微相建模方法在苏14加密实验区的应用[J].成都理工大学学报(自然科学版),2017,44(01):76-85.

[21]宋成辉,王志章,漆家福等.多参数综合方法判别沉积微相[J].西安石油大学学报(自然科学版),2004(06):10-14+22-88.

[22]王亚如.准噶尔盆地南缘雀儿沟剖面齐古组-清水河组沉积环境及沉积相研究[D].长江大学,2023.

[23]何红生.涟邵煤田北段测水煤系岩相古地理与聚煤作用[J].中国煤炭地质,2009,21(03):11-15.

[24]康世龙,吕玉民,王存武等.沉积环境对煤层含气性的控制:以沁水盆地寿阳地区太原组15~#煤为例[J/OL].古地理学报,1-15[2024-01-17].

[25]吴崇筠.沉积学进展[J].石油实验地质,1986(01):1-7.

[26]范媛媛. 新疆准噶尔盆地南缘上侏罗统齐古组沉积相及沉积环境研究[D].长安大学,2022.

[27]Xu, X W., Jiang N., Li, X.H., et al. Tectonic evolution of the East Junggar terrane: Evidence from the Taheir tectonic window, Xinjiang, China[J]. Gondwana Research, 2013. 24(2):578–600.

[28]马红卫.台格庙矿区基岩孔隙裂隙发育规律及富水性分区研究[J].煤,2023,32(12):27-31+40.

[29]代革联,高幸,姬中奎.侏罗纪煤田延安组煤层顶板含水层富水性评价[J].能源与环保,2023,45(03):86-92.DOI:10.19389/j.cnki.1003-0506.2023.03.015.

[30]武强.我国矿井水防控与资源化利用的研究进展、问题和展望[J].煤炭学报,2014,39(05):795-805.

[31]A.OI, I. AE, P. FI. Determination of Aquifer Hydraulic Parameters Using Single Well Pumping Test Borehole Data Within Boki Local Government Area, Cross River State, South Eastern Nigeria[J]. Journal of Environment and Earth Science, 2018, 8(3): 26-36.

[32]Gregor J, Pastuszek F. On the Derivative of Drawdown for Single Well Pumping Tests[J]. Water Resources Management, 2018, 32(13): 4155-4158.

[33]刘璟,李辉.单井抽水试验计算承压含水层水文地质参数方法探讨[J].西部探矿工程,2012,24(07):186-188.

[34]李丞,王宁涛,胡成等.利用多孔抽水试验确定承压-无压流条件下承压含水层的水文地质参数[J].安全与环境工程,2020,27(04):1-7.

[35]黄浩,方刚,梁向阳等.榆神矿区工作面顶板富水性综合分析[J].煤矿安全,2020,51(11):232-236+242.

[36]顾素清.基于三维物探技术的矿井水害探测研究[J].内蒙古煤炭经济,2021(24):23-25.

[37]Raiche A P, Gallagher R. Apparent resistivity and diffusion velocity[J]. Journal of Applied Geophysies, 2000, 44:1628-1633.

[38]Kulk S N, Burakhovich T K. A three-dimensional crustal geoelectric model of the Ukrainian Shield[J]. Izvestiy a Physics of the Solid Earth, 2007, 43(4): 284 -289.

[39]武强,樊振丽,刘守强等.基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J].煤炭学报,2011,36(07):1124-1128.

[40]武强,黄晓玲,董东林等.评价煤层顶板涌(突)水条件的“三图-双预测法”[J].煤炭学报,2000(01):62-67.

[41]武忠山,武超,刘凯祥等.基于AHP法的顶板直接充水含水层富水性评价[J].内蒙古煤炭经济,2019(03):153-156.

[42]唐李斌,吴基文,毕尧山等.基于AHP-熵权法耦合的含水层富水性评价研究[J].中国矿业,2020,29(12):147-152.

[43]侯恩科,闫鑫,郑永飞等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(06):942-949.

[44]李哲,曾一凡,刘守强,等.BP人工神经网络在富水性评价中的应用[J].煤炭工程,2018,50(8):114-118.

[45] Peng T, Zhang H C, Shen S H, et al. Comprehensive Evaluation and Analysis of Water-Inrush Source in Wolonghu Coal Mine[J]. Advanced Materials Research, 2014, 3482: 926-929.

[46] Nico Goldscheider. Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany[J]. Hydrogeology Journal, 2005, 13: 555-564.

[47]余静.矿井水害的类型划分和水文结构的模式研究[J].江西化工,2019(06):143-145.

[48]Wu Q, Guo X, Shen J, et al. Risk assessment of water inrush from aquifers underlying the Gushuyuan coal mine, China[J]. Mine Water and the Environment, 2017, 36(1): 96.

[49]Gandhe A, Venkateswarlu V, Gupta R N. Extraction of coal under a surface water body–a strata control investigation[J]. Rock Mechanics and Rock Engineering,2005, 38: 399-410.

[50]赵宝峰.沉积和构造特征对含水层富水性的影响[J].工程勘察,2015,43(09):51-54+80.

[51]赵宝峰.沉积控水规律及其在矿井防治水研究中的应用[D].武汉:中国地质大学,2015.

[52]代革联,杨韬,周英,等.神府矿区柠条塔井田直罗组地层富水性研究[J].安全与环境学报,2016,16(4):144-147.

[53]Chao M ,Xuehua L ,Qiangling Y , et al.Numerical research on stability control of roofs of water-rich roadway[J].International Journal of Mining Science and Technology,2014,24(03):409-416.

[54]武强,王洋,赵德康等.基于沉积特征的松散含水层富水性评价方法与应用[J].中国矿业大学学报,2017,46(03):460-466.

[55]彭涛,宣良瑞,张海潮等.卧龙湖煤矿砂岩含水层富水性预测及评价[J].煤矿安全,2014,45(08):199-202.

[56]侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016,41( 9) : 2312-2318.

[57]冯洁,侯恩科,王苏健等.陕北侏罗系沉积控水规律与沉积控水模式[J].煤炭学报,2021,46(05):1614-1629.

[58]林磊.高家堡煤矿洛河组砂岩沉积控水规律研究[D].西安科技大学,2021.

[59]宁建国,刘学生,谭云亮等.浅埋砂质泥岩顶板煤层保水开采评价方法研究[J].采矿与安全工程学报,2015,32(05):814-820.

[60]黄欢.巨厚充水含水层疏放水层位优化研究[J].中国煤炭,2023,49(12):39-44.

[61]任战利,赵重远.鄂尔多斯盆地与沁水盆地中生代晚期地温场对比研究[J].沉积学报,1997,(02):134-137.

[62]时志强,韩永林,张锦泉.鄂尔多斯盆地早侏罗世富县期岩相古地理特征[J].矿物岩石,2001,(03):124-127.

[63]范萌萌,卜军,袁珍,等.鄂尔多斯盆地中东部延安组古环境恢复[J].西安科技大学学报,2023,43(05):912-922.

[64]贾超,刘禧超,郭维.内蒙古鄂尔多斯地区延安组沉积环境分析[J].西部资源,2021(05):1-2+5.

[65]时志强,韩永林,赵俊兴,等.鄂尔多斯盆地中南部中侏罗世延安期沉积体系及岩相古地理演化[J].地球学报,2003,(01):49-54.

[66]俊峰,刘池洋,赵建设,等.鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J].西北大学学报(自然科学版),2008(03):480-486.

[67]苗彦平,陈小绳,等.鄂尔多斯盆地北部直罗组赋存特征及富水性[J].煤炭学报,2022,47(10):3572-3598

[68]张悦泽.鄂尔多斯黄陵地区长1-长3高精度层序地层和沉积相研究[D].中国地质大学(北京),2016.

[69]李宝芳,李祯.鄂尔多斯盆地中下侏罗统沉积体系和层序地层[M].北京:地质出版社,1995.

[70]李志华,黄文辉,朱伟厚.基准面变化与岩相及砂体展布的沉积响应——以鄂尔多斯盆地苏南地区盒八段辫状河三角洲为例[J].断块油气田,2016,23(06):709-715.

[71]陈晨.乌审旗—横山地区中侏罗世沉积特征与控水规律研究[D].煤炭科学研究总院,2018.

[72]王良忱.沉积环境与沉积相[M].北京:石油工业出版社,1996.

[73]曹琦,郑龙君,王金玲.沉积岩中颜色与成因的关系[J].黑龙江科技信息,2014(28):105.

[74]肖渊甫,岩石学简明教程[M].北京:地质出版社,2017.

[75]李广雪.古龙咀周围海区沉积物粒度特征及海底地形变化[D].北京:中国科学院研究生院,2008.

[76]马正.综合利用测井曲线研究沉积特征及绘制小层岩相图[J].地球科学,1986,(03):289-294.

[77]鲍云杰,李志明,杨振恒,等.孔隙度测定误差及其控制方法研究[J].石油实验地质,2019,41(4): 593–59.

[78]郝甜甜,李立立,韩丰竹,等.松辽盆地东南部伏龙泉地区登娄库组致密储层特征及优质储层主控因素分析[J].世界地质,2024,43(04):496-508.

[79]井康康,董旭,蔺广泉,等.低渗储层孔隙结构的分形特征研究—以鄂尔多斯盆地永宁油田顺宁—洛河北区长6储层为例[J].非常规油气,2021(4):19-25.

[80]阎珍,任大忠,王虎,等.鄂尔多斯盆地神木地区侏罗系延安组煤层孔隙结构及可动流体饱和度影响因素[J].非常规油气,2024,11(05):122-131.

[81]侯恩科,闫鑫,郑永飞等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(06):942-949.

[82]聂茜.Bayes判别方法的改进及其应用研究[D].桂林理工大学,2022.

[83]陈相兵.基于多元密度核估计的Bayes判别法[J].数学的实践与认识,2015,45(10):185-189.

[84]艾天霞,张蕾.传统Bayes判别与非参数核密度Bayes判别的比较[J].江南大学学报(自然科学版),2015,14(05):677-680.

[85]Efromovich S. Nonparametric density estimation over its unknown support for right censored data[J]. Statistics & Probability Letters, 2024: 110084.

[86]煤矿防治水细则[S].国家煤矿安全监察局,2018.

[87]侯恩科,杨斯亮,苗彦平,等.基于Bayes判别分析模型的风化基岩富水性预测[J].煤矿安全,2023,54(01):180-187.

[88]余婕,田世祥,王伟,等.基于AHP-Bayes的城镇老旧小区动态智能化火灾风险评估模型:以上海市M小区为例[J].安全与环境工程,2021,28(5):10-17.

[89]樊振丽,武强,孙晓宇.梧桐庄矿多含水层底板突水危险性评价[J].煤矿开采,2011,16(05):89-93.

中图分类号:

 TD745    

开放日期:

 2025-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式