- 无标题文档
查看论文信息

论文中文题名:

 全球土地覆盖时序遥感产品的精度检验研究    

姓名:

 赵婷婷    

学号:

 21210061042    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081603    

学科名称:

 工学 - 测绘科学与技术 - 地图制图学与地理信息工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 时序地表覆盖制图评估    

第一导师姓名:

 刘良云    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-31    

论文外文题名:

 Research on accuracy assessment of global land cover time series remote sensing products    

论文中文关键词:

 土地覆盖变化 ; 长时序验证数据集 ; 精细土地覆盖产品 ; 精度检验 ; 一致性分析    

论文外文关键词:

 Land cover change ; long time series validation datasets ; fine land cover products ; accuracy assessment ; consistency analysis    

论文中文摘要:

土地覆盖和土地覆盖变化被定义为人类干扰、气候变化所产生的地球表面生物特征波动的演化过程。它对水文建模、气候建模和地球系统建模至关重要,在生物多样性保护和碳循环中也发挥着重要作用。由于开放卫星数据的免费访问和低成本云计算平台的出现,一系列全球或区域尺度的土地覆盖遥感制图研究取得了重大进展,逐步实现中低分辨率和单年份制图向高分辨率和年度动态制图的过渡。然而,由于合适验证数据集的缺失,致使土地覆盖产品之间的精度差异未知且年度动态土地覆盖图验证滞后。因此,本研究试图通过分层等面积随机抽样和目视解译的方法收集一套2020年全球土地覆盖验证数据集;应用2020年验证样本数据集对目前可用的精细分辨率土地覆盖产品进行面积和空间一致性的比较分析以及全方位的精度评估;基于Google Earth Engine平台研发长时序验证数据集收集的解译工具进行1985-2020年长时序验证数据集的收集;以1985-2020年全球30米长时序土地覆盖动态产品(GLC_FCS30D)为研究对象,从变化监测角度完成精度评估。得到如下结论:

(1)样本布设采用柯本气候、人口密度和全球景观格局为分层依据的抽样设计方案,在一定程度上降低了分布在均质区域的纯净地类样本数量,同时提高呈零散分布的复杂地类样本数量。基于Google Earth Engine平台开发的解译工具,通过目视解译和变化监测模型完成长时序土地覆盖验证数据集的收集。该长时序验证数据集共包含79,112个样本,基于二项式分布的单个类型样本量确定公式,所有土地覆盖类型的样本大小足以支撑在全球范围内进行精度评估。此外,其在空间分布上直观反映了全球实际的土地覆盖情况。

(2)全球精细分辨率土地覆盖产品因制图策略、数据源等差异导致他们之间精度和一致性方面差异显著。欧空局研发的土地覆盖产品(ESA WorldCover)在10米产品中取得了最高的总体精度(70.54%±9%),其次是清华大学生产的Finer Resolution Observation and Monitoring-Global Land Cover10(FROM-GLC10)(68.95%±8%)和ESRI 开发的土地覆盖产品(ESRI Land Cover)(58.90%±7%));GLC_FCS30在30米产品中总体精度最高(72.55%±9%),其次是全球土地覆盖数据集(GlobeLand30)(69.96%±9%)和FROM-GLC30(66.30%±8%)。从面积一致性角度,ESRI Land Cover除外,其余五种产品之间的面积一致性大于85%,但六种产品在草地、灌木林、湿地和裸地的面积一致性方面存在较大差异。从空间一致性角度,10米和30米产品的完全不一致像素比例分别为23.58%和14.12%,这些不一致像素主要分布在过渡带、复杂地形区域、异质景观或混合土地覆盖类型区域。

(3)全球土地覆盖在过去35年间了显著变化,其中森林损毁、耕地增加以及不透水面扩张是主要的变化趋势。耕地、灌木和草地全球净变化量分别为37.24%、27.07%和13.31%。GLC_FCS30D产品I级类总体精度范围为77.58±0.29%~79.02±0.28%;II级类总体精度范围为65.09±0.33%~66.55±0.32%。GLC_FCS30D产品对时间序列精度变化具有显著的稳定性,在美国和欧盟两个区域的平均总体精度分别为79.50%(±0.50%)和81.91%(±0.09%)。针对土地覆盖变化的二值精度评估显示,在不同的研究时段,美国和欧盟不变区域的生产者精度和用户精度(92.84±0.42%和96.28±0.32%以及96.73±0.25%和92.36±0.36%)高于变化区域的生产者精度和用户精度(72.26±2.04%和56.62±2.00%以及52.86±2.04%和73.31±2.00%)。最后,使用验证数据集对各地类面积偏差进行估计,结果表明灌木丛和草地存在明显的面积偏差。

论文外文摘要:

Land cover and land cover changes are defined as the dynamic process involving alterations in the biological characteristics of the Earth's surface due to human activities and climate variations. It is critical for hydrological modelling, climate modeling and earth system modeling, and also plays a vital role in biodiversity conservation and the global carbon cycle. Due to free access to open satellite data and the emergence of low-cost cloud computing platforms, there has been significant progress in global or regional-scale land cover mapping research. This progress has seen a shift from low-resolution and single-year mapping to high-resolution and annual dynamic mapping. However, the lack of suitable validation datasets has led to uncertainties in the accuracy of land cover products and a delay in validating annual dynamic land cover maps. Therefore, this study attempts to collect a comprehensive global dataset for global land cover validation dataset in 2020 through stratified equal-area random sampling design and visual interpretation. We conducted area and spatial consistency analyses on currently available fine-resolution land cover products, as well as a comparative accuracy assessment using the 2020 validation dataset. Then, we developed an interpretation tool for collecting a long-term validation dataset from 1985 to 2020 based on the Google Earth Engine platform. We also performed accuracy assessments from a change monitoring perspective taking the global 30-m long time series land cover dynamic product (GLC_FCS30D) from 1985 to 2020 as the research object. The following conclusions are obtained:

(1) The sample allocation adopts a stratified sampling design based on Köppen climate, population density and global landscape pattern. This approach effectively reduces the number of pure land samples distributed in a homogeneous area, while enhancing the samples number in complex regions. The interpretation tool developed based on the Google Earth Engine platform successfully gathered long-term land cover validation datasets through visual interpretation and the change monitoring model. The validation dataset contains a total of 79,112 samples. Based on the single-type sample size determination formula of the binomial distribution, the sample size of all land cover types is sufficient to support accuracy assessment on a global scale. And its spatial distribution intuitively reflects the distribution of actual global land cover.

(2) Global fine-resolution land cover products exhibit considerable variability in accuracy and consistency, due to the disparities in mapping strategies, data sources, and other factors. ESA WorldCover achieved the highest overall accuracy (of 70.54% ± 9%) among the global 10 m land cover products, followed by FROM-GLC10 (68.95% ± 8%) and ESRI Land Cover (58.90% ± 7%), and that GLC_FCS30 had the best overall accuracy (of 72.55% ± 9%) among the global 30 m land cover datasets, followed by GlobeLand30 (69.96% ± 9%) and FROM-GLC30 (66.30% ± 8%). From the perspective of area consistency, it can be found that the area consistencies between the five GLC products (except ESRI Land Cover) were greater than 85%, and that all six GLC products showed large discrepancies in area consistency for grassland, shrubland, wetland and bare land. From the perspective of spatial consistency, the totally inconsistent pixel proportions of the 10 m and 30 m GLC products were 23.58% and 14.12%, respectively, these inconsistent pixels were mainly distributed in transition zones and regions with complex terrains, heterogeneous landscapes, or mixed land-cover types.

(3) Global land cover has changed significantly in the past 35 years, with forest destruction, increase in cropland, and expansion of impervious surfaces being the main trends. The net changes in global land cover mainly transformed into net changes of 37.24%, 27.07% and 13.31% in cropland, shrubland and grassland, respectively. The overall accuracy range of GLC_FCS30D product in level I classification system is 77.58±0.29%~79.02±0.28% and the overall accuracy range in level II classification system is 65.09±0.33%~ 66.55±0.32%. The GLC_FCS30D product has significant stability to changes in time series accuracy, with average overall accuracies of 79.50% (±0.50%) and 81.91% (±0.09%) in the United States and the European Union, respectively. The binary accuracy assessment for land cover changes showed that producer’s accuracy and user’s accuracy in unchanged area (92.84±0.42% and 96.28±0.32% and 96.73±0.25% and 92.36±0.36% for the US and EU) higher than those in changed area (72.26±2.04% and 56.62±2.00% and 52.86±2.04% and 73.31±2.00%) during different study periods. Finally, the validation dataset was used to estimate the area bias of each land-cover types, and the results showed a distinct area bias between shrublands and grasslands.

参考文献:

[1] Potapov P, Hansen M C, Pickens A, et al. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results [J]. Frontiers in Remote Sensing, 2022, 3.

[2] Tsendbazar N, Herold M, Li L, et al. Towards operational validation of annual global land cover maps [J]. Remote Sensing of Environment, 2021, 266.

[3] Tsendbazar N-E, de Bruin S, Herold M. Integrating global land cover datasets for deriving user-specific maps [J]. International Journal of Digital Earth, 2016, 10(3): 219-37.

[4] Herold M, Mayaux P, Woodcock C E, et al. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets [J]. Remote Sensing of Environment, 2008, 112(5): 2538-56.

[5] Turner B L, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability [J]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20666-71.

[6] Costa M H, Botta A, Cardille J A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia [J]. Journal of hydrology, 2003, 283(1-4): 206-17.

[7] Pielke Sr R A, Pitman A, Niyogi D, et al. Land use/land cover changes and climate: modeling analysis and observational evidence [J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(6): 828-50.

[8] McCarthy M, Harpham C, Goodess C, et al. Simulating climate change in UK cities using a regional climate model, HadRM3 [J]. International Journal of Climatology, 2012, 32(12): 1875-88.

[9] Brovkin V, Claussen M, Driesschaert E, et al. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity [J]. Climate Dynamics, 2006, 26: 587-600.

[10] Falcucci A, Maiorano L, Boitani L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation [J]. Landscape ecology, 2007, 22: 617-31.

[11] Jung M, Henkel K, Herold M, et al. Exploiting synergies of global land cover products for carbon cycle modeling [J]. Remote Sensing of Environment, 2006, 101(4): 534-53.

[12] Verburg P H, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies [J]. Global change biology, 2011, 17(2): 974-89.

[13] Pengra B W, Stehman S V, Horton J A, et al. Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program [J]. Remote Sensing of Environment, 2020, 238.

[14] Tsendbazar N E, Herold M, de Bruin S, et al. Developing and applying a multi-purpose land cover validation dataset for Africa [J]. Remote Sensing of Environment, 2018, 219: 298-309.

[15] Cihlar J. Land cover mapping of large areas from satellites: Status and research priorities [J]. International Journal of Remote Sensing, 2010, 21(6-7): 1093-114.

[16] Gong P, Liu H, Zhang M, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J]. Science Bulletin, 2019, 64(6): 370-3.

[17] Zhang X, Liu L, Wang Y, et al. A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 m [J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 83-94.

[18] Hansen M C, DeFries R S, Townshend J R, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach [J]. International journal of remote sensing, 2000, 21(6-7): 1331-64.

[19] Loveland T R, Reed B C, Brown J F, et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data [J]. International journal of remote sensing, 2000, 21(6-7): 1303-30.

[20] Friedl M, Sulla-Menashe D, Tan B, et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of new Datasets [J]. Remote Sensing of Environment, 2010, 114: 168-82.

[21] Friedl M A, McIver D K, Hodges J C F, et al. Global land cover mapping from MODIS: algorithms and early results [J]. Remote Sensing of Environment, 2002, 83(1): 287-302.

[22] Bicheron P, Leroy M, Brockmann C, et al. Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series [Z]. Proceeding of the Second International Symposium on Recent Advances in Quantitative Remote Sensing. 2006: 538-42

[23] Lamarche C, Santoro M, Bontemps S, et al. Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community [J]. Remote Sensing, 2017, 9(1): 36.

[24] Giri C, Pengra B, Long J, et al. Next generation of global land cover characterization, mapping, and monitoring [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25: 30-7.

[25] Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J]. International Journal of Remote Sensing, 2013, 34(7): 2607-54.

[26] McCallum I, Obersteiner M, Nilsson S, et al. A spatial comparison of four satellite derived 1km global land cover datasets [J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(4): 246-55.

[27] Karra K, Kontgis C, Statman-Weil Z, et al. Global land use / land cover with Sentinel 2 and deep learning [Z]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium. 12–16 July 2021: 4704-7.10.1109/IGARSS47720.2021.9553499

[28] Brown C F, Brumby S P, Guzder-Williams B, et al. Dynamic World, Near real-time global 10 m land use land cover mapping [J]. Scientific Data, 2022, 9(1): 251.

[29] Brown J F, Tollerud H J, Barber C P, et al. Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach [J]. Remote Sensing of Environment, 2020, 238.

[30] Chen J, Chen J, Liao A, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.

[31] Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J]. International Journal of Remote Sensing, 2012, 34(7): 2607-54.

[32] Zhang X, Liu L, Chen X, et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery [J]. Earth System Science Data, 2021, 13(6): 2753-76.

[33] Zanaga D, Van De Kerchove R, De Keersmaecker W, et al. ESA WorldCover 10 m 2020 v100 [J]. 2021.

[34] Townshend J R G, Justice C O, Skole D, et al. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme† [J]. International Journal of Remote Sensing, 2007, 15(17): 3417-41.

[35] Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325-40.

[36] Liu H, Gong P, Wang J, et al. Annual dynamics of global land cover and its long-term changes from 1982 to 2015 [J]. Earth System Science Data, 2020, 12(2): 1217-43.

[37] Loveland T R, Belward A. The international geosphere biosphere programme data and information system global land cover data set (DISCover) [J]. Acta Astronautica, 1997, 41(4-10): 681-9.

[38] Cover C L. Release of a 1992-2015 Time Series of Annual Global Land Cover Maps at 300 M [Z]. 2017

[39] Buchhorn M, Smets B, Bertels L, et al. Copernicus Global Land Service: Land Cover 100m: Collection 3 Epoch 2015, Globe [J]. Version V3 01)[Data set], 2020.

[40] 许晓聪, 李冰洁, 刘小平. 全球2000年—2015年30 m分辨率逐年土地覆盖制图 [J]. 遥感学报, 2021, 25(09): 1896-916.

[41] Foody G M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices [J]. International Journal of Remote Sensing, 2005, 26(6): 1217-28.

[42] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets [J]. Remote Sensing of Environment, 2010, 114(1): 168-82.

[43] Gao Y, Liu L, Zhang X, et al. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset [J]. Remote Sensing, 2020, 12(21): 3479.

[44] Zhao Y, Gong P, Yu L, et al. Towards a common validation sample set for global land-cover mapping [J]. International Journal of Remote Sensing, 2014, 35(13): 4795-814.

[45] Olofsson P, Stehman S V, Woodcock C E, et al. A global land-cover validation data set, part I: fundamental design principles [J]. International Journal of Remote Sensing, 2012, 33(18): 5768-88.

[46] Fritz S, See L, Perger C, et al. A global dataset of crowdsourced land cover and land use reference data [J]. Sci Data, 2017, 4: 170075.

[47] Ballin M, Barcaroli G, Masselli M, et al. Redesign sample for land use/cover area frame survey (LUCAS) 2018 [J]. Eurostat: statistical working papers, 2018, 10: 132365.

[48] Stehman S V, Pengra B W, Horton J A, et al. Validation of the U.S. Geological Survey's Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017 [J]. Remote Sensing of Environment, 2021, 265.

[49] Fonte C C, Bastin L, See L, et al. Usability of VGI for

validation of land cover maps [J]. International Journal of Geographical Information Science, 2015, 29(7): 1269-91.

[50] Defourny P, Schouten, L., Bartalev, S., et al. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience [J]. International Journal of Remote Sensing, 2007, 28: 5123-41.

[51] Fritz S, McCallum I, Schill C, et al. Geo-Wiki. Org: The use of crowdsourcing to improve global land cover [J]. Remote Sensing, 2009, 1(3): 345-54.

[52] Stehman S V, Fonte C C, Foody G M, et al. Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover [J]. Remote Sensing of Environment, 2018, 212: 47-59.

[53] Pontus Olofsson G M F. Good practices for estimating area and assessing accuracy of land change [J]. Remote Sensing of Environment, 2014, 148(25): 42-57.

[54] Gallego J, Bamps C. Using CORINE land cover and the point survey LUCAS for area estimation [J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(4): 467-75.

[55] Orgiazzi A, Ballabio C, Panagos P, et al. LUCAS Soil, the largest expandable soil dataset for Europe: a review [J]. European Journal of Soil Science, 2018, 69(1): 140-53.

[56] Weigand M, Staab J, Wurm M, et al. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88: 102065.

[57] Stehman S V, Pengra B W, Horton J A, et al. Validation of the U.S. Geological Survey's Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017 [J]. Remote Sensing of Environment, 2021, 265: 112646.

[58] Tsendbazar N E, de Bruin S, Herold M. Assessing global land cover reference datasets for different user communities [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 93-114.

[59] Congalton R, Gu J, Yadav K, et al. Global Land Cover Mapping: A Review and Uncertainty Analysis [J]. Remote Sensing, 2014, 6(12): 12070-93.

[60] Stehman S V. Practical Implications of Design-Based Sampling Inference for Thematic Map Accuracy Assessment [J]. Remote Sensing of Environment, 1999.

[61] Stehman S V. Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing [J]. Remote Sensing of Environment, 2009, 113(11): 2455-62.

[62] Xie H, Wang F, Gong Y, et al. Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability [J]. Sustainability, 2022, 14(5): 2479.

[63] Wickham J D, Stehman S V, Gass L, et al. Accuracy assessment of NLCD 2006 land cover and impervious surface [J]. Remote Sensing of Environment, 2013, 130: 294-304.

[64] Chen J, Chen J, Liao A, et al. Global land cover mapping at 30m resolution: A POK-based operational approach [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.

[65] Waśniewski A, Hościło A, Chmielewska M. Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping? [J]. Remote Sensing, 2022, 14(4).

[66] Bai Y, Feng M, Jiang H, et al. Validation of Land Cover Maps in China Using a Sampling-Based Labeling Approach [J]. Remote Sensing, 2015, 7(8): 10589-606.

[67] Yang Y, Xiao P, Feng X, et al. Accuracy assessment of seven global land cover datasets over China [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 156-73.

[68] Brovelli M, Molinari M, Hussein E, et al. The First Comprehensive Accuracy Assessment of GlobeLand30 at a National Level: Methodology and Results [J]. Remote Sensing, 2015, 7: 4191-212.

[69] 孟雯, 童小华, 谢欢, 等. 基于空间抽样的区域土地覆盖遥感制图产品精度评估——以中国陕西省为例 [J]. 地球信息科学学报, 2015, 17(06): 742-9.

[70] Wang Y, Zhang J, Liu D, et al. Accuracy Assessment of GlobeLand30 2010 Land Cover over China Based on Geographically and Categorically Stratified Validation Sample Data [J]. Remote Sensing, 2018, 10(8): 1213.

[71] 邹佳楠, 潘广磊, 张德朋, 等. 全球30 m分辨率土地覆被遥感产品精度比较分析 [J]. 科技经济导刊, 2019, 27(16): 19-21.

[72] Kang J, Wang Z, Sui L, et al. Consistency Analysis of Remote Sensing Land Cover Products in the Tropical Rainforest Climate Region: A Case Study of Indonesia [J]. Remote Sensing, 2020, 12(9): 1410.

[73] Kang J, Yang X, Wang Z, et al. Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China [J]. Land, 2022, 11(3): 427.

[74] Jun W, Yang X, Wang Z, et al. Consistency Analysis and Accuracy Assessment of Three Global Ten-Meter Land Cover Products in Rocky Desertification Region—A Case Study of Southwest China [J]. ISPRS International Journal of Geo-Information, 2022, 11(3): 202.

[75] Venter Z S, Barton D N, Chakraborty T, et al. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover [J]. Remote Sensing, 2022, 14(16): 4101.

[76] Herold M, Woodcock C E, Antonio di G, et al. A joint initiative for harmonization and validation of land cover datasets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1719-27.

[77] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析 [J]. 地理学报, 2009, 64(12): 1411-20.

[78] Calderón-Loor M, Hadjikakou M, Bryan B A. High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015 [J]. Remote Sensing of Environment, 2021, 252.

[79] Wickham J, Stehman S V, Gass L, et al. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD) [J]. Remote Sens Environ, 2017, 191: 328-41.

[80] Wickham J, Stehman S V, Neale A C, et al. Accuracy assessment of NLCD 2011 percent impervious cover for selected USA metropolitan areas [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 84.

[81] Wickham J, Stehman S V, Sorenson D G, et al. Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States [J]. Remote Sensing of Environment, 2021, 257.

[82] Stehman S V. Sampling designs for accuracy assessment of land cover [J]. International Journal of Remote Sensing, 2009, 30(20): 5243-72.

[83] Foody G M. Harshness in image classification accuracy assessment [J]. International Journal of Remote Sensing, 2008, 29(11): 3137-58.

[84] Song X P, Hansen M C, Stehman S V, et al. Global land change from 1982 to 2016 [J]. Nature, 2018, 560(7720): 639-43.

[85] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone [J]. Remote Sensing of Environment, 2017, 202: 18-27.

[86] Huang H, Chen Y, Clinton N, et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine [J]. Remote Sensing of Environment, 2017, 202: 166-76.

[87] Kumar L, Mutanga O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential [J]. Remote Sensing, 2018, 10(10).

[88] Xie S, Liu L, Zhang X, et al. Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine [J]. Remote Sensing, 2019, 11(24).

[89] Feizizadeh B, Omarzadeh D, Kazemi Garajeh M, et al. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine [J]. Journal of Environmental Planning and Management, 2021: 1-33.

[90] Tarko A, Tsendbazar N E, de Bruin S, et al. Influence of image availability and change processes on consistency of land transformation interpretations [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 86.

[91] Fitzpatrick-Lins K. Comparison of sampling procedures and data analysis for a land-use and land-cover map [J]. Photogrammetric Engineering and Remote Sensing, 1981, 47(3): 343-51.

[92] Stehman S V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes [J]. International Journal of Remote Sensing, 2014, 35(13): 4923-39.

[93] Feng M, Sexton J O, Huang C, et al. Earth science data records of global forest cover and change: Assessment of accuracy in 1990, 2000, and 2005 epochs [J]. Remote Sensing of Environment, 2016, 184: 73-85.

[94] Stehman S V, Olofsson P, Woodcock C E, et al. A global land-cover validation data set, II: augmenting a stratified sampling design to estimate accuracy by region and land-cover class [J]. International Journal of Remote Sensing, 2012, 33(22): 6975-93.

[95] Bai Y, Feng M, Jiang H, et al. Assessing Consistency of Five Global Land Cover Data Sets in China [J]. Remote Sensing, 2014, 6(9): 8739-59.

[96] Hua T, Zhao W, Liu Y, et al. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO [J]. Remote Sensing, 2018, 10(11): 1846.

[97] Tsendbazar, de Bruin S, Fritz S, et al. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets [J]. Remote Sensing, 2015, 7(12): 15804-21.

[98] Lu Y, Sun P, Linghu L, et al. Uncertainty evaluation approach based on Shannon entropy for upscaled land use/cover maps [J]. Journal of Land Use Science, 2022, 17(1): 648-57.

[99] Saah D, Johnson G, Ashmall B, et al. Collect Earth: An online tool for systematic reference data collection in land cover and use applications [J]. Environmental Modelling & Software, 2019, 118: 166-71.

[100] Cohen W B, Yang Z, Kennedy R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation [J]. Remote Sensing of Environment, 2010, 114(12): 2911-24.

[101] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data [J]. Remote Sensing of Environment, 2014, 144: 152-71.

[102] Zhu Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 370-84.

[103] Chen J, Jönsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter [J]. Remote Sensing of Environment, 2004, 91(3-4): 332-44.

[104] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote Sensing of Environment, 2012, 118: 83-94.

[105] Souza C M, Roberts D A, Cochrane M A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires [J]. Remote Sensing of Environment, 2005, 98(2-3): 329-43.

[106] Jia K, Liang S, Wei X, et al. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data [J]. Remote Sensing, 2014, 6(11): 11518-32.

[107] Maniatis D, Dionisio D, Guarnieri L, et al. Toward a More Representative Monitoring of Land-Use and Land-Cover Dynamics: The Use of a Sample-Based Assessment through Augmented Visual Interpretation Using Open Foris Collect Earth [J]. Remote Sensing, 2021, 13(21).

[108] Zhang X, Liu L, Chen X, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery [J]. Earth Syst Sci Data Discuss, 2020, 2020: 1-31.

[109] Liu L, Zhang X, Gao Y, et al. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects [J]. Journal of Remote Sensing, 2021, 2021: 5289697.

[110] Zhang X, Zhao T, Xu H, et al. GLC_FCS30D: The first global 30-m land-cover dynamic monitoring product with a fine classification system from 1985 to 2022 using dense time-series Landsat imagery and continuous change-detection method [J]. Earth System Science Data Discussions, 2023, 2023: 1-32.

[111] Winkler K, Fuchs R, Rounsevell M, et al. Global land use changes are four times greater than previously estimated [J]. Nat Commun, 2021, 12(1): 2501.

[112] Xian G Z, Smith K, Wellington D, et al. Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product [J]. Earth System Science Data, 2022, 14(1): 143-62.

[113] Anderson J R. A land use and land cover classification system for use with remote sensor data [M]. US Government Printing Office, 1976.

[114] d'Andrimont R, Yordanov M, Martinez-Sanchez L, et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union [J]. Sci Data, 2020, 7(1): 352.

[115] Nelson M D, Garner J D, Tavernia B G, et al. Assessing map accuracy from a suite of site-specific, non-site specific, and spatial distribution approaches [J]. Remote Sensing of Environment, 2021, 260.

[116] Roy D P, Kovalskyy V, Zhang H K, et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity [J]. Remote Sens Environ, 2016, Volume 185(Iss 1): 57-70.

[117] Hay A M. Sampling designs to test land-use map accuracy [J]. Photogrammetric Engineering and Remote Sensing, 1979, 45(4): 529-33.

中图分类号:

 P237    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式