- 无标题文档
查看论文信息

论文中文题名:

 防治煤自燃新型凝胶的防灭火性能研究    

姓名:

 闫涛    

学号:

 18220214097    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 王建国    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Study on Fire-fighting Performance of New Gel for Preventing and Control Coal Spontaneous Combustion    

论文中文关键词:

 煤自燃 ; 凝胶 ; 煤分子基团 ; 热稳定性 ; 防灭火    

论文外文关键词:

 Coal spontaneous combustion ; gel ; coal molecular group ; thermal stability ; fire prevention    

论文中文摘要:

凝胶防灭火在煤自燃、矿井火灾等煤火灾害的防控应用研究中得到了长足发展,先后涌现了诸多凝胶防灭火材料与技术,但实际应用中仍然存在成本昂贵、流动性差、井下喷注设备复杂和材料污染工作面等缺点和不足。拟研究制备一种常温为A、B液体,混合后形成粘性低、流动性好、在一定时间内逐步胶凝化的凝胶,且具使用便捷性和良好防灭火性能特点的新型凝胶。

基于凝胶理论研究,选择了3种交联剂和5种胶凝剂进行交叉复配实验,根据胶凝时间、成胶体系性状、粘度和浓度等指标参数进行评价优选,确定新型凝胶的最佳组分材料、浓度和配比,并通过正交配制实验进行了验证。通过红外实验、热稳定性实验和程序升温实验,研究了煤分子基团分布、凝胶对煤分子基团的影响作用、新型凝胶材料的抗温性能和保水性以及凝胶对煤氧化自燃过程的阻化抑制效能。

结果表明:最优组分材料为交联剂L1、胶凝剂J2和改性物质MGP,对应浓度、配比为(L1+MGP-10%+3%):(J2-8%)=1:1;三种组分材料的浓度变化引起凝胶成胶结果改变的相关度,胶凝剂J2最大、交联剂L1次之,MGP最小;新型凝胶对煤分子基团具有阻化抑制作用,阻化作用随组分A/B浓度的升高而增强,且阻化效能的高低受组分B浓度大小的影响更多;最佳凝胶处理煤样分子基团的吸光度和峰面积均大幅下降,尤其与煤自燃密切相关的羟基、碳氧单键和羰基的降幅更为明显,得到各基团的含量降幅排序为:羰基>碳氧单键>芳香烃>羟基>甲基>亚甲基>碳碳双键>氢键;新型凝胶材料的热稳定性良好,凝胶体系保水可达6 h以上;添加新型凝胶材料能够降低煤自燃过程中CO的产生量及生成率、添加30 g、60 g和90 g时,对1 kg实验煤样的阻化率分别可达37%、54%和65%左右;添加新型凝胶材料能够提高反应的活化能,致使煤氧反应发生愈发困难。

论文外文摘要:

Gel fire-fighting technology and materials have made great progress in the prevention and control of coal fire disasters such as coal spontaneous combustion and mine fires. Although many gel fire-fighting materials and technologies have emerged, however, in practical applications, there are still shortcomings and deficiencies such as high cost, poor fluidity, complex downhole injection equipment, and material contamination of the working surface. It is planned to research and develop a new type of gel that is A and B liquid at room temperature, which will form a gel with low viscosity, good fluidity, and gradually gel in a certain period of time after mixing, and has the characteristics of convenient use and good fire-fighting performance.

Based on gel theory research, three crosslinking agents and five gelling agents were selected for pairwise cross-compounding experiments, and evaluation and optimization were made according to the index parameters such as gelation time, gel-forming system properties, viscosity, and concentration. Determine the best component materials, concentration and ratio of the new gel, and verify it through orthogonal preparation experiments. Through infrared experiment, thermal stability experiment and temperature program experiment, reaserach the distribution of coal molecular groups, the effect of gel on coal molecular groups, the temperature resistance and water retention of the new gel material, as well as the gel's inhibitory effect on the spontaneous combustion process of coal oxidation.

The results show : the optimal component materials are cross-linking agent L1, gelling agent J2 and modified substance MGP, and the corresponding concentration and ratio are (L1+MGP-10%+3%): (J2-8%)=1 :1; The changes in the concentration of the three component materials cause the correlation of changes in gel formation results, gelling agent J2 is the largest, crosslinking agent L1 is the second, and MGP is the smallest; The new gel has an inhibitory effect on coal molecular groups, and the inhibitory effect increases with the increase of the concentration of component A/B, and the inhibitory effect is more affected by the concentration of component B; The absorbance and peak area of the molecular groups of the coal sample treated with the best gel are greatly reduced, especially the hydroxyl group, carbon-oxygen single bond and carbonyl group which are closely related to the spontaneous combustion of coal. The descending order of the content of each group is as follows: carbonyl> carbon-oxygen single bond> aromatic hydrocarbon> hydroxyl> methyl> methylene> carbon-carbon double bond> hydrogen bond; The new gel material has good thermal stability, and the gel system can retain water for more than 6 hours;  The addition of new gel materials can reduce the amount and rate of CO produced during the spontaneous combustion of coal. When 30g, 60g and 90g gel are added, the inhibition rate of 1kg experimental coal sample can reach about 37%, 54% and 65% respectively; The addition of new gel materials can increase the activation energy of the reaction, making it more difficult for coal-oxygen reactions to occur.

参考文献:

[1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960.

[2] 袁亮,张平松.煤炭精准开采地质保障技术的发展现状及展望[J].煤炭学报,2019,44(8):2277-2284.

[3] Dingfei Jie, Xiangyang Xu, Fei Guo. The future of coal supply in China based on non-fossil energy development and carbon price strategies[J]. Energy, 2021, 220: 119644.

[4] 吴吟.保障国家能源安全推进煤炭工业高质量发展[J].中国煤炭,2020,46(7):1-3.

[5] 吴楠.中国煤炭产业发展现状分析[J].中外企业家,2019(23):64-65+67.

[6] 孙伟,林青,赵宏飞.以安全智能创新绿色“四轮驱动”推进煤炭产业高质量发展[J].煤矿安全,2020,51(10):187-190.

[7] 黄光球,徐聪.低碳经济视角下能源产业可持续发展与政策仿真研究[J.煤炭工程,2020,52(5):187-193.

[8] Jinjia Zhang, Kaili Xu, Genserik Reniers, et al. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018[J]. Process Safety and Environmental Protection, 2020, 133: 332-340.

[9] 黄军利.煤矿井下避难硐室位置优化及应用研究[D].中国矿业大学,2018.

[10] Weiwei Zhu, Nengzhi Yao, Jing Yan. Exploring the determinants of disaster coverage: Evidence from coal mine disasters coverage in China[J]. International Journal of Disaster Risk Reduction, 2018, 31: 856-861.

[11] Aito Zhou, Meng Zhang, Kai Wang. Airflow disturbance induced by coal mine outburst shock waves: A case study of a gas outburst disaster in China[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104262.

[12] 邓军,李贝,王凯,等.我国煤火灾害防治技术研究现状及展望[J].煤炭科学技术,2016,44(10):1-7+101.

[13] Xiangjun Chen, Liyang Li, Lin Wang, et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China[J]. Safety Science, 2019, 115: 229-236.

[14] 安敬鱼,牛会永,邓军,等.矿井火灾原因综合分析及防治技术[J].矿业工程研究,2015,30(3):40-44.

[15] 张波,谢雄刚,刘洋成.基于熵值法—突变理论的煤矿自燃火灾安全评价研究[J].矿业安全与环保,2018,45(5):120-125.

[16] Hongwei Liu, Fei Wang, Ting Ren, et al. Influence of methane on the prediction index gases of coal spontaneous combustion: A case study in Xishan coalfield, China[J]. Fuel, 2021, 289: 119852.

[17] Wei Lu, Ying-Jiazi Cao, Jerry C.Tien. Method for prevention and control of spontaneous combustion of coal seam and its application in mining field[J]. International Journal of Mining Science and Technology, 2017, 27(5): 839-846.

[18] 马砺,刘庚,肖旸,等.煤田火区发展演化的多场耦合作用过程[J].科技导报,2016,34(2):190-194.

[19] 闫军.浅谈新疆煤田火区不断发展扩大和新生的原因[J].陕西煤炭,2018,37(2):57-59.

[20] 王文才,张伟,张培,等.大面积煤田露头火区范围的圈划研究[J].煤矿安全,2018,49(4):168-172.

[21] Jinchang Deng, Shaokun Ge, Haining Qi, et al. Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis[J]. Science of The Total Environment, 2021, 777: 146080.

[22] 朱红青,胡超,张永斌,等.我国矿井内因火灾防治技术研究现状[J].煤矿安全,2020,51(3):88-92.

[23] 康健婷,王俊峰,刘春生,等.近距离煤层联合开采采空区自然发火规律及防治技术研究[J].中国安全生产科学技术,2018,14(5):82-88.

[24] Qing-Wei Li, Yang Xiao, Kai-Qi Zhong, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981.

[25] Zhengyan Wu, Shanshan Hu, Shuguang Jiang, et al. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 272-277.

[26] Yi-jin Fan, Yan –Yun Zhao, Xiang –Ming Hu, et al. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications[J]. Fuel, 2020, 263: 116693.

[27] 赵立克,张辛亥,郑仲明.新型凝胶防灭火技术在大采高综采工作面自燃防治中的应用[J].煤矿安全,2020,51(10):131-134.

[28] Xiaofeng Ren, Xiangming Hu, Di Xu, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of Hazardous Materials, 2019, 371: 643-654.

[29] 王俊峰,董凯丽,梁择文,等.矿用防灭火凝胶的制备和特性研究[J].煤矿安全,2020,51(10):126-130.

[30] 朱树来.防治煤自燃的泡沫凝胶防灭火特性研究[J].煤炭科学技术,2019,47(10):223-228.

[31] Xianfeng Chen, Ao Fen, Bihe Yuan, et al. Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent[J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 14-22.

[32] Quanlin Shi, Botao Qin. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal[J]. Fuel, 2019, 254;115558.

[33] 邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125.

[34] 郭军,蔡国斌,金彦,等.煤自燃火灾防治技术研究进展及趋势[J].煤矿安全,2020,51(11):180-184.

[35] 梁运涛,侯贤军,罗海珠,等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术,2016,44(6):1-6+13.

[36] 李丁.防治煤自燃的多态泡沫及其特性研究[D].天津理工大学,2019.

[37] 王刚.新型高分子凝胶防灭火材料在煤矿火灾防治中的应用[J].煤矿安全,2014,45(2):228-229.

[38] 王开胜,陆伟,杜云峰,等.防治煤自燃塑性水玻璃凝胶研究[J].矿业安全与环保,2016,43(1):8-11.

[39] Gang Wang, Guoqiang Yan, Xinhua Zhang, et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 474-486.

[40] Yongsheng Li, Xiangming Hu, Weimin Cheng, et al. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature[J]. Fuel. 2020, 263: 116779.

[41] Glenn B. Stracher. Chapter 12 - Colloid Technology for Preventing and Extinguishing the Spontaneous Combustion of Coal[J]. Coal and Peat Fires: A Global Perspective. 2019, 5:217-241.

[42] Weimin Cheng, Xiaogming Hu, Jun Xie, et al. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties[J]. Fuel. 2017, 210:826-835.

[43] Di Xue, Xiangming Hu, Weimin Cheng, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications[J]. Fuel. 2020, 264: 116903.

[44] Yibo Tang, Shihua Hu, Huae Wang. Using P–Cl inorganic ultrafine aerosol particles to prevent spontaneous combustion of low-rank coal in an underground coal mine[J]Fire Safety Journal. 2020, 115: 103140.

[45] 张雷林.防治煤自燃的凝胶泡沫及特性研究[D].中国矿业大学,2014.

[46] 周佩玲,张英华,黄志安,等.预防遗煤自燃的新型凝胶复合材料研究[J].煤矿安全,2016,47(5):34-37.

[47] 李方磊.防治煤自燃的新型稠化胶体特性研究[D].中国矿业大学,2017.

[48] Shuailong Li, Gang Zhou, Yuying Wang, et al. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines[J]. Process Safety and Environmental Protection, 2019, 125: 207-218.

[49] 周春山.矿用羧甲基纤维素钠/柠檬酸铝防灭火凝胶的制备与特性研究[D].太原理工大学,2017.

[50] Qing Guo, Wanxing Ren, Jintuo Zhu, et al. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines[J]. Process Safety and Environmental Protection, 2019, 128: 176-183.

[51] 沈一丁,王德明,王庆国,等.一种凝胶泡沫的研制及其封堵阻化特性[J].煤矿安全,2017,48(9):28-31.

[52] 徐方荣.新型凝胶干水灭火剂及其灭火效能研究[D].北京理工大学,2016.

[53] 张祖忞.凝胶-干水粉体的性能及灭火效能实验研究[D].武汉理工大学,2018.

[54] 杨元博.温敏性水凝胶制备及灭火特性实验研究[D].西安科技大学,2019.

[55] 王俊,吴志远,王金英.防灭火智能多孔凝胶的制备及性能研究[J].科学技术与工程,2017,17(7):212-216.

[56] 宋沙沙.表面活性剂水凝胶形成机理、刺激响应性质与应用研究[D].山东大学,2015.

[57] Yifeng Chen; Jiaheng Teng; Liguo Shen; Genying Yu; Renjie Li; Yanchao Xu; Fangyuan Wang; Bao-Qiang Liao; Hongjun Lin. [J] Bioresource Technology, 2019, 276: 219-225.

[58] X.N.Zhang, C.Du, M.Du, et al. Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links[J]. Materials Today Physics, 2020, 15: 100230.

[59] 耿玉慧.基于丙烯酸/丙烯酸十八酯两亲性共聚物的环境响应性物理水凝胶[D].浙江大学,2017.

[60] 陈清瑞.基于环糊精的包结复合凝胶与疏水缔合凝胶的制备及其性质研究[D].吉林大学,2010.

[61] Xiao-ming Tu, Bao-hui Su, Jun-guo Ran. Preparation by sol-gel method and evaluation of lanthanum-containing filling glass ionomer cement powder[J]. Materials Letters, 2016, 185(15): 236-239.

[62] 刘顺利.基于有机金属配位键构建功能高分子网络结构及性能研究[D].东南大学,2018.

[63] Kang Mengmeng; Oderinde Olayinka; Liu Shunli; Huang Qianqian; Ma Wenjing; Yao Fang; Fu Guodong. Characterization of Xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion.[J].Carbohydrate Polymers, 2019, 203: 139-147.

[64] 付维贵,毛云云,薛莹莹,等.PVA/PAA/Fe~(3+)超分子水凝胶的制备及其性能[J].天津工业大学学报,2019,38(3):28-34.

[65] 刘占军.接枝壳聚糖纳米粒的制备及负载药物性能研究[D].天津大学,2010.

[66] Xianyang Bao, Long Yu, Shirley Shen, et al. How rheological behaviors of concentrated starch affect graft copolymerization of acrylamide and resultant hydrogel[J]. Carbohydrate Polymers, 2019, 219: 395-404.

[67] Arti Mahto, Sumit Mishra. Design, development and validation of guar gum based pH sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations[J]. International Journal of Biological Macromolecules, 2019, 138: 278-291.

[68] Carmen Valverde, Gerard Lligadas, Juan C.Ronda, et al. PEG-modified poly(10,11-dihydroxyundecanoic acid) amphiphilic copolymers. Grafting versus macromonomer copolymerization approaches using CALB, 2018, 109: 179-190.

[69] 郭正潮.季铵盐/季鏻盐淀粉接枝共聚物的制备[D].郑州大学.2014.

[70] 李彦杰.黄原胶分子的辐射修饰、产物特征及功能特性研究[D].中国农业科学院,2011.

[71] Tran, Thu Hong, Hirotaka Okabe, et al. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting[J]. Carbohydrate Polymers, 2017, 157: 335 343.

[72] Nagahama K, Imai Y, Nakayama T, et al. Thermo-sensitive sol–gel transition of poly (depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution [J].Polymer, 2009, 50: 3547-3555.

[73] 孙其松,马博谋,梅华强,等.聚乳酸接枝改性壳聚糖性能[J].塑料,2019,48(2):109-113+122.

[74] 曹萌雅.基于原子转移自由基聚合和活性阴离子聚合机理的聚合诱导自组装研究[D].河南师范大学,2019.

[75] I Kryven, P. D. Iedema. Transition into the gel regime for free radical crosslinking polymerisation in a batch reactor[J]. Polymer, 2014, 55(16): 3475-3489.

[76] 杨静仪,周雪松.原子转移自由基聚合方法制备的半纤维素基水凝胶及其性能[J].高分子材料科学与工程,2014,30(1):21-25.

[77] 方倩.酶催化交联可控制备氧化石墨烯/天然高分子纳米复合水凝胶及其应用[D].南昌大学,2019.

[78] Le Truc Nguyen, Kun-Lin Yang. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions[J]. Enzyme and Microbial Technology, 2017, 100: 52-59.

[79] 佘英奇.酶催化交联的透明质酸水凝胶的合成及其药物控释应用[D].南昌大学,2016.

[80] 范治平.酶法和原位化学连接法交联生物高分子水凝胶的研究[D].东南大学,2015.

[81] 严煌.无烟煤分子结构特征及热解过程中官能团迁移特性研究[D].中国矿业大学,2019.

[82] Bin Tian, Long Xu, Man Jing, et al. Formation mechanisms and molecular distributions of the major groups in the pyrolytic volatiles of two bituminous coals[J]. Fuel, 2020, 281: 118778.

[83] 马腾,陈晓坤,翟小伟,等.基于官能团演化特性的煤氧化动力学研究[J].西安科技大学学报,2020,40(1):71-77.

[84] 袁壮.煤自燃阶段特征及活化能变化规律的实验研究[D].重庆大学,2017.

[85] 赵红.清洁型泡沫凝胶的制备及其成胶特性的研究[D].河南理工大学,2014.

[86] 卢苗苗.侏罗纪煤低温氧化自燃特性及其指标气体实验研究[D].西安科技大学,2018.

[87] Yong Dong, Lianming Zhao, Xiaoqing Lu, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science,2017, 423: 33-42.

[88] 赵兴国,戴广龙.氧化煤自燃特性实验研究[J].中国安全生产科学技术,2020,16(6):55-60.

[89] 翟小伟,成倬,徐启飞,等.粒径对煤低温氧化阶段表观活化能影响试验研究[J].煤炭工程,2020,52(10):143-148.

[90] 邓军,张宇轩,赵婧昱,等.基于程序升温的不同粒径煤氧化活化能试验研究[J].煤炭科学技术,2019,47(1):214-219.

中图分类号:

 TD752.2    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式