- 无标题文档
查看论文信息

论文中文题名:

 煤层小断层影响下的煤体瓦斯赋存特性研究    

姓名:

 吴铭川    

学号:

 19220214114    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 肖鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Research on coal gas occurrence characteristics under the influence of small coal seam faults    

论文中文关键词:

 小断层 ; 煤层瓦斯 ; 煤孔隙结构 ; 瓦斯地质 ; 瓦斯赋存    

论文外文关键词:

 Small fault ; Coal seam gas ; Coal pore structure ; Gas geology ; Gas occurrence.    

论文中文摘要:

       随着我国煤矿开采深度增加,开采强度增大,地质构造对煤层瓦斯赋存影响作用逐渐增强,煤层小断层作为采掘工作面广泛发育的小型构造之一,其构造影响区域煤体赋存特性的改变导致煤层瓦斯异常赋存,使得回采过程中瓦斯涌出量异常变化,煤与瓦斯动力灾害频发,严重影响煤矿安全高效生产。因此,研究煤层小断层影响下的煤体瓦斯赋存特性对科学合理防治瓦斯灾害具有一定指导意义。

       基于澄合矿区煤层小断层广泛发育的地质背景,通过现场采集不同规模的煤层小断层影响下的断层煤岩和原始煤岩样品,进行煤样基础参数测定,结果表明断层煤样水分和挥发分变化不大,灰分减小,固定碳增加;断层煤样坚固性系数在0.12~0.21之间,小于原始煤样;进一步对煤体粒径分布测定,发现中等粒径和小粒径煤颗粒质量占比增加,表明小断层影响下的煤体物理特性发生改变。

       采用电镜扫描、压汞实验、氮气吸附实验对煤体孔隙结构进行研究,发现断层煤样内部裂隙和孔隙较原始煤样更为发育;断层煤样微孔、中孔的孔容增大,过渡孔孔容变化不明显,大孔孔容减小;断层煤样的微孔、过渡孔和中孔累计比表面积较原始煤样增加,大孔累计比表面积减小。利用瓦斯吸附解吸仪和煤岩芯渗透率测定装置对煤体瓦斯吸附解吸及渗透特性进行分析,得出断层煤样瓦斯吸附量大于原始煤样,各阶段的瓦斯解吸量也大于原始煤样,断层煤样初始渗透率低于原始煤样,随气体压力增加,两者渗透差值逐渐减小;随煤层小断层规模增大,煤体瓦斯吸附、解吸能力显著增强,煤体渗透率则逐渐减小。

       通过构建含小断层煤层数值模型,模拟分析煤层小断层影响下的局部煤层应力特征,结果表明断层上盘煤层应力随与断层距离的增加,先快速减小,随后缓慢提升,之后趋于稳定,断层下盘煤层应力随与断层距离的减小,先是缓慢小幅增大,接近断层面时快速减小,断层面与煤层的交互处存在应力集中区域,且随着断距增加,应力峰值逐渐增大。通过现场瓦斯含量测定得到煤层小断层与瓦斯异常分布的关系,断层区域瓦斯含量处于2.1197m3/t~5.6331m3/t之间,主要在小断层上盘形成瓦斯富集区域,随断层规模增大,其对瓦斯异常超量赋存的影响作用增强。研究结果为矿井瓦斯灾害预测、煤层气开采和矿井瓦斯防治可提供一定理论依据。

论文外文摘要:

        With the increase of coal mining depth and mining intensity in China, the influence of geological structure on coal seam gas distribution is gradually enhanced, and the small fault of coal seam is one of the small structures widely developed in the mining working face, and the change of coal distribution characteristics in the tectonic influence area leads to the abnormal distribution of coal seam gas, which makes the abnormal change of gas outflow during the recovery process and the frequent occurrence of coal and gas power disasters, which seriously affects the safe and efficient coal mine production. Therefore, it is of certain significance to study the coal gas distribution characteristics under the influence of small coal seam faults for scientific and reasonable prevention and control of gas disasters.

        Based on the geological background that small coal seam faults are widely developed in Chenghe mining area, we collected samples of faulted coal rock and original coal rock under the influence of small coal seam faults of different scales and carried out the determination of basic parameters of coal samples, the results showed that the moisture and volatile matter of faulted coal samples did not change much, ash decreased and fixed carbon increased; the solidity coefficient of faulted coal samples ranged from 0.12 to 0.21, which was smaller than that of original coal samples; further determination of coal body Further determination of the particle size distribution of the coal body showed that the mass proportion of medium and small size coal particles increased, indicating that the physical properties of the coal body changed under the influence of the small fault.

        The pore structure of the coal body was studied by electron microscope scanning, mercury pressure test and nitrogen adsorption test, and it was found that the internal fracture and pore size of the faulted coal sample were more developed than those of the original coal sample; the pore volume of microporous and medium pores of the faulted coal sample increased, the pore volume of transition pores did not change significantly, and the pore volume of large pores decreased; the accumulated specific surface area of microporous, transition pores and medium pores of the faulted coal sample increased compared with that of the original coal sample, and the accumulated specific surface area of large pores decreased. Using gas adsorption and desorption instrument and coal core permeability measurement device to analyze the gas adsorption and desorption and permeability characteristics of coal body, it is concluded that the gas adsorption amount of fault coal sample is larger than that of the original coal sample, and the gas desorption amount of each stage is also larger than that of the original coal sample, the initial permeability of fault coal sample is lower than that of the original coal sample, and the difference between the two permeability values gradually decreases with the increase of gas pressure; with the increase of the scale of small fault of coal seam, the gas adsorption and desorption capacity of coal body,the coal permeability decreases gradually as the size of the small fault increases.

        By constructing a numerical model of coal seam containing small fault, we simulate and analyze the local stress characteristics of coal seam under the influence of small fault in coal seam, and the results show that the stress of coal seam on the upper plate of fault decreases rapidly with the increase of distance from the fault, then increases slowly and then stabilizes, and the stress of coal seam on the lower plate of fault increases slowly and slightly with the decrease of distance from the fault, and decreases rapidly when it is close to the fault surface, and there is a stress concentration area at the interaction of fault surface and coal seam. The stress concentration area exists at the interaction between the fault surface and the coal seam, and the peak stress gradually increases with the increase of the fault distance. The relationship between the small fault of the coal seam and the distribution of gas anomaly was obtained through the field gas content measurement, the gas content in the fault area was between 2.1197m3/t~5.6331m3/t, and the gas enrichment area was formed mainly in the upper plate of the small fault, and the influence of the fault on the gas anomaly overload distribution was enhanced as the scale of the fault increased. The research results can provide some theoretical basis for mine gas disaster prediction, coalbed methane mining and mine gas control.

参考文献:

[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(01): 1-6.

[2] 蓝航, 陈东科, 毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术, 2016, 44(01): 39-46.

[3] 景国勋, 刘孟霞. 2015-2019年我国煤矿瓦斯事故统计与规律分析 [J/OL]. 安全与环境学报:1-8[2022-04-26].

[4] 叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气, 2020, 17(04): 44-47.

[5] 张子敏, 张玉贵. 大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J]. 煤炭学报, 2005(02): 137-140.

[6] 舒龙勇, 程远平, 王亮, 等. 地质因素对煤层瓦斯赋存影响的研究[J]. 中国安全科学学报, 2011, 21(02): 121-125.

[7] 张子敏, 吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘, 2013, 20(02): 237-245.

[8] 孔胜利, 杨洋, 贾音, 等. 煤层瓦斯赋存特征及其关键地质因素影响研究[J]. 煤炭科学技术, 2019, 47(07): 53-58.

[9] 高魁, 乔国栋, 刘健, 等. 构造复杂矿区煤与瓦斯突出瓦斯地质分析[J]. 中国安全科学学报, 2019, 29(01): 119-124.

[10] 崔洪庆, 姚念岗. 不渗透断层与瓦斯灾害防治[J]. 煤炭学报, 2010, 35(09): 1486-1489.

[11] 关金锋, 崔洪庆, 司小昆. 煤层小断层附近采动应力演化特征与瓦斯突出防治[J]. 安全与环境学报, 2017, 17(06): 2164-2170.

[12] 苏晓云. 厚煤层内小断层的反射槽波探测技术及应用[J]. 煤田地质与勘探, 2022, 50(01): 25-30.

[13] Lin J Y, Zuo Y J, Zhang K, et al. Coal and Gas Outburst Affected by Law of Small Fault Instability during Working Face Advance[J]. Geofluids, 2020, 2020(1): 1-12.

[14] 王恩营. 煤炭开采中小断层研究的几个问题[J]. 中国矿业, 2006(08): 60-62.

[15] 李平恩, 殷有泉. 断层地震孕育和发生的不稳定性模型[J]. 地球物理学报, 2014, 57(01): 157-166.

[16] 余伟健, 高谦, 靳学奇, 等. 受断层构造影响的深部岩体现场调查及力学特征分析[J]. 地球物理学进展, 2013, 28(01): 488-497.

[17] 孟召平, 彭苏萍, 黎洪. 正断层附近煤的物理力学性质变化及其对矿压分布的影响[J]. 煤炭学报, 2001(06): 561-566.

[18] Godyn K. Structurally altered hard coal in the areas of tectonic disturbances-an initial attempt at classification[J]. Archives of mining sciences, 2016, 61(3): 677-694.

[19] 郭德勇, 韩德馨, 王新义. 煤与瓦斯突出的构造物理环境及其应用[J]. 北京科技大学学报, 2002(06): 581-584+592.

[20] 张浪, 刘永茜. 断层应力状态对煤与瓦斯突出的控制[J]. 岩土工程学报, 2016, 38(04): 712-717.

[21] Wang H W, Shi R M, Deng D X, et al. Characteristic of stress evolution on fault surface and coal bursts mechanism during the extraction of longwall face in Yima mining area, China[J]. Journal of Structural Geology, 2020, 136: 104071.

[22] 罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(02): 154-164.

[23] Cheng Y P, Pan Z J. Reservoir properties of Chinese tectonic coal: A review[J]. Fuel, 2020, 260: 116350.

[24] 邵强, 王恩营, 王红卫, 等. 构造煤分布规律对煤与瓦斯突出的控制[J]. 煤炭学报, 2010, 35(02): 250-254.

[25] Tu Q Y, Cheng Y P, Ren T, et al. Role of tectonic coal in coal and gas outburst behavior during coal mining[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4619-4635.

[26] Zhou R, Qin Y J, Hu Y. The role of the reverse fault on the permeability evolution in mining coal[J]. Geofluids, 2021, 2021: 7560478.

[27] 王恩营, 刘明举. 煤层断层形成的岩体综合强度分析[J]. 辽宁工程技术大学学报, 2002(04): 496-498.

[28] 王恩营, 邵强, 杜云宽, 等. 逆断层两盘构造煤成因机理与分布[J]. 矿业安全与环保, 2010, 37(01): 4-6+90.

[29] 王恩营, 邵强, 韩松林. 正断层形成的力学分析及其对构造煤的控制[J]. 煤炭科学技术, 2009, 37(09): 104-106+109.

[30] 赵迪斐, 郭英海, Geoff W, 等. 基于分形建模的高煤级煤孔隙结构特征量化表征——以阳泉矿区山西组煤样为例[J]. 东北石油大学学报, 2019, 43(03): 53-66+8.

[31] 秦修培, 邹艳, 汪吉林. 构造变形对煤孔隙发育特征影响的研究[J]. 煤炭科学技术, 2017, 45(04): 155-159.

[32] Wang Z Y, Cheng Y P, Qi Y X, et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology, 2019, 350: 15-25.

[33] 张慧杰, 张浪, 汪东, 等. 构造煤的瓦斯放散特征及孔隙结构微观解释[J]. 煤炭学报, 2018, 43(12): 3404-3410.

[34] 王振洋, 程远平. 构造煤与原生结构煤孔隙特征及瓦斯解吸规律试验[J]. 煤炭科学技术, 2017, 45(03): 84-88.

[35] Liu J G, Jiang B, Li M, et al. Structural control on pore-fracture characteristics of coals from Xinjing coal mine, northeastern Qinshui basin, China[J]. ARABIAN JOURNAL OF GEOSCIENCES, 2015, 8(7): 4421-4431.

[36] 许满贵, 孟然, 魏攀, 等. 软煤体孔隙结构及其分形特征研究[J]. 矿业安全与环保, 2015, 42(06): 22-26.

[37] 周睿, 程晓之, 苏伟伟, 等. 逆断层区域煤体孔隙结构及瓦斯吸附解吸特征研究[J]. 煤矿安全, 2021, 52(09): 22-28.

[38] Zhao T, Cheng X Y, Zhang H, et al. Temperature variation law of outburst coal during adsorption and desorption process[J]. Arabian Journal of Geosciences, 2022, 15(2): 1-19.

[39] 胡彪, 程远平, 王亮. 原生结构煤与构造煤孔隙结构与瓦斯扩散特性研究[J]. 煤炭科学技术, 2018, 46(03): 103-107+24.

[40] Chen S Y, Qin Y, Zhang Q S, et al. Numerical description of shale gas desorption stages[J]. Energy Exploration & Exploitation, 2017, 35(6): 734-747.

[41] 徐佑林, 吴旭坤. 瓦斯压力对煤体吸附特性及结构影响实验研究[J]. 煤矿安全, 2019, 50(08): 1-4+9.

[42] Liu T, Lin B Q, Fu X H, et al. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195: 117005.

[43] 杨鑫, 张俊英, 王公达, 等. 瓦斯压力对瓦斯在煤中扩散影响的实验研究[J]. 中国矿业大学学报, 2019, 48(03): 503-510+519.

[44] 孙光中, 王公忠, 张瑞林. 构造煤渗透率对温度变化响应规律的试验研究[J]. 岩土力学, 2016, 37(04): 1042-1048.

[45] 刘永茜, 侯金玲, 张浪, 等. 孔隙结构控制下的煤体渗透实验研究[J]. 煤炭学报, 2016, 41(S2): 434-440.

[46] 张遵国, 曹树刚, 郭平, 等. 原煤和型煤吸附-解吸瓦斯变形特性对比研究[J]. 中国矿业大学学报, 2014, 43(03): 388-394.

[47] 祝捷, 姜耀东, 孟磊, 等. 载荷作用下煤体变形与渗透性的相关性研究[J]. 煤炭学报, 2012, 37(06): 984-988.

[48] Lu J, Yin G Z, Deng B Z. Permeability characteristics of layered composite coal-rock under true triaxial stress conditions[J]. Journal of NaturalGas Science and Engineering, 2019, 66: 60-76.

[49] 张明杰, 张凯, 贾天让. 安-鹤煤田水文地质条件对瓦斯赋存影响[J]. 煤炭技术, 2016, 35(08): 86-88.

[50] 赵俊山, 陈亮, 李瑞敬, 等. 地质构造及水动力条件对瓦斯赋存的控制作用[J]. 煤炭科学技术, 2019, 47(07): 74-81.

[51] Li Q S, He X, Wu J H, et al. Investigation on coal seam distribution and gas occurrence law in Guizhou, China[J]. Energy Exploration & Exploitation, 2018, 36(5): 1310-1334.

[52] 黄波, 乔军好, 乔晓军, 等. 登封煤田新登煤矿水文地质特征及瓦斯赋存规律[J]. 河南理工大学学报(自然科学版), 2021, 40(02): 49-57+88.

[53] 高魁, 刘泽功, 刘健. 复合构造带力学特征及其对瓦斯突出的作用机制[J]. 中国安全科学学报, 2017, 27(05): 111-116.

[54] Liu Y J, Li X L, Liu S M, et al. Study on influence of fault structure on coal mine gas occurrence regularity based on the fractal theory: a case study of Panxi mine in China[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2019(24):1-11.

[55] 刘义生, 赵少磊. 开平向斜地质构造特征及其对瓦斯赋存的控制[J]. 煤炭学报, 2015, 40(S1): 164-169.

[56] Chen X J, Li L Y, Yuan Y, et al. Effect and mechanism of geological structures on coal seam gas occurrence in Changping minefield[J]. Energy Science & Engineering, 2020, 8(1): 104-115.

[57] 闫江伟, 张玉柱, 王蔚. 平顶山矿区瓦斯赋存的构造逐级控制特征[J]. 煤田地质与勘探, 2015, 43(02): 18-23.

[58] 王亮, 郭海军, 程远平, 等. 岩浆岩环境煤层瓦斯异常赋存特征与动力灾害防控关键技术[J]. 煤炭学报, 2022, 47(03): 1244-1259.

[59] 杨治国, 王恩营, 李中州. 断层对煤层瓦斯赋存的控制作用[J]. 煤炭科学技术, 2014, 42(06): 104-106.

[60] Wei G Y, Kang F C, Qin B B, et al. A novel method for evaluating proneness of gas outburst based on gas-geological complexity[J]. Natural Hazards, 2020, 104(2): 1841-1858.

[61] Guo P K, Cheng Y P, Jin K, et al. The impact of faults on the occurrence of coal bed methane in Renlou coal mine, Huaibei coalfield, China[J]. Journal of Natural Gas Science and Engineering, 2014, 17: 151-158.

[62] 魏国营, 姚念岗. 断层带煤体瓦斯地质特征与瓦斯突出的关联[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(05): 604-608.

[63] 聂凤祥, 刘永杰, 郭海峰. 基于分形理论的断层构造对千米深井瓦斯赋存规律的影响研究[J]. 煤矿安全, 2019, 50(03): 150-153+158.

[64] Zhang J F, Yang F F, Zhang R G, et al. Experimental research on coal seam structure and gas occurrence influencing factors in Weijiadi mine China[J]. Fresenius Environmental Bulletin, 2022, 31(1): 74-80.

[65] 曹佐勇, 何学秋, 王恩元, 等. 隐伏逆断层带的瓦斯涌出规律及控制因素研究[J]. 采矿与安全工程学报, 2018, 35(03): 657-662.

[66] 严家平, 姚金林, 童宏树, 等. 任楼煤矿小断层对瓦斯涌出的控制作用[J]. 煤田地质与勘探, 2007(04): 19-22.

[67] 陆卫东, 魏国营, 陶东东. 阶梯状断层控制煤层瓦斯分布特征[J]. 煤炭技术, 2017, 36(07): 153-155.

[68] 康付如, 马曙, 韩真理, 等. 贵州煤矿区大、中型断层对瓦斯赋存的影响[J]. 中国煤炭, 2016, 42(06): 37-41.

[69] 王麒翔, 王琦. 构造控制与瓦斯涌出量分带[J]. 煤炭技术, 2016, 35(01): 176-178.

[70] 孙小明, 赵晶, 廉振山. 陷落柱-断层复合构造发育特征及对瓦斯赋存的影响研究[J]. 煤矿安全, 2020, 51(06): 14-18.

[71] 高亚斌, 林柏泉, 杨威, 等. 不渗透小断层群瓦斯异常赋存特点及防治研究[J]. 中国矿业大学学报, 2013, 42(06): 989-995+1059.

[72] 成龙. 渭北石炭—二叠纪煤田地质构造发育特征对地下水的控制作用[D]. 西安科技大学, 2013.

[73] 王超平. 渭北煤田地质构造发育规律研究[D]. 西安科技大学, 2014.

[74] GB/T 19222-2003, 煤岩样品采取方法[S].

[75] 王付斌, 王博, 董志刚, 等. 沁水盆地晋中地区构造特征及圈闭评价[J]. 物探化探计算技术, 2017, 39(05): 636-642.

[76] 徐珂, 戴俊生, 冯建伟, 等. 南堡凹陷高深北区三维非均质应力场精细预测[J]. 中国矿业大学学报, 2018, 47(06): 1276-1286.

[77] 武强, 王金华, 刘东海, 等. 煤层底板突水评价的新型实用方法Ⅳ:基于GIS的AHP型脆弱性指数法应用[J]. 煤炭学报, 2009, 34(02): 233-238.

[78] 陆诗阔, 王收基, 刘会见, 等. 运用三维地震资料确定断层滑动参数的定量化方法[J]. 石油学报, 2018, 39(03): 304-313.

[79] 许进鹏, 宋扬, 程久龙, 等. 小断层的走向长度与断距关系的数学模型[J]. 煤炭学报, 2005(01): 22-25.

[80] 曹代勇, 穆宣社, 武清海, 等. 蔚县矿区断层构造定量研究[J]. 煤田地质与勘探, 2001(01): 7-10.

[81] 琚宜文, 姜波, 侯泉林, 等. 构造煤结构-成因新分类及其地质意义[J]. 煤炭学报, 2004(05): 513-517.

[82] 蔡成功, 王魁军. 煤坚固性系数f测定中若干问题的探讨[J]. 中国矿业大学学报, 1996(02): 84-88.

[83] 侯泉林, 李会军, 范俊佳, 等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学, 2012, 42(10): 1487-1495.

[84] Zhang L, Zhao Q, Wu C, et al. Pore structures of the lower permian taiyuan shale and limestone in the ordos basin and the significance to unconventional natural gas generation and storage[J]. Geofluids, 2022, 2022: 3156547.

[85] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987(04): 51-56+97-101.

[86] 秦雷, 王平, 翟成, 等. 基于氮气吸附法和压汞法低温液氮冻结煤体分形特征研究[J/OL]. 采矿与安全工程学报, 1-12[2022-04-26].

[87] B .B .霍多特著, 宋士钊, 王佑安. 煤与瓦斯突出[M]. 煤与瓦斯突出, 1966.

[88] 王磊, 刘怀谦, 谢广祥, 等. 含瓦斯煤孔裂隙结构精细表征及强度劣化机制[J]. 岩土力学, 2021, 42(12): 3203-3216.

[89] 琚宜文. 构造煤结构及储层物性[M]. 构造煤结构及储层物性, 2005.

[90] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142-156.

[91] 程远平, 胡彪. 微孔填充——煤中甲烷的主要赋存形式[J]. 煤炭学报, 2021, 46(09): 2933-2948.

[92] 曹涛涛, 宋之光, 刘光祥, 等. 氮气吸附法—压汞法分析页岩孔隙、分形特征及其影响因素[J]. 油气地质与采收率, 2016, 23(02): 1-8.

[93] 肖鹏, 杜媛媛. 构造煤微观结构对其吸附特性的影响实验[J]. 西安科技大学学报, 2021, 41(02): 237-245.

[94] 常未斌, 张浪, 孙晓军, 等. 煤粒瓦斯放散能力与吸附常数b的相关性研究[J]. 煤炭科学技术, 2013, 41(S2): 229-231.

[95] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(01): 180-198.

[96] 许江, 袁梅, 李波波, 等. 煤的变质程度、孔隙特征与渗透率关系的试验研究[J]. 岩石力学与工程学报, 2012, 31(04): 681-687.

[97] 尹光志, 黄启翔, 张东明, 等. 地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(02): 336-343.

[98] 曹运兴, 张海洋, 张震, 等. 正断层上盘的煤与瓦斯突出特征与地应力场控制机理[J/OL]. 煤田地质与勘探: 1-8[2022-04-26].

[99] 武强, 朱斌, 刘守强. 矿井断裂构造带滞后突水的流–固耦合模拟方法分析与滞后时间确定[J]. 岩石力学与工程学报, 2011, 30(01): 93-104.

[100] 翁剑桥, 曾联波, 吕文雅, 等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 2020, 26(01): 39-47.

[101] GB/T 23250-2009, 煤层瓦斯含量井下直接测定方法[S].

[102] 魏国营, 门金龙, 贾安立, 等. 基于上覆基岩特征的赵固一矿井田煤层瓦斯富集区的判识方法[J]. 煤炭学报, 2012, 37(08): 1315-1319.

中图分类号:

 TD712    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式