- 无标题文档
查看论文信息

论文中文题名:

 复杂起伏地形下煤岩分层结构的瞬态电磁响应研究    

姓名:

 张旭    

学号:

 22206029010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080805    

学科名称:

 工学 - 电气工程 - 电工理论与新技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电磁场与电磁波理论及其新技术    

第一导师姓名:

 曹乐    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-17    

论文答辩日期:

 2025-06-05    

论文外文题名:

 Transient Electromagnetic Response of Coal-rock Layered Structures in Complex Undulating Terrain    

论文中文关键词:

 时域有限差分方法 ; 分形布朗起伏地形建模 ; 亚网格技术 ; 瞬态电磁响应    

论文外文关键词:

 Time-domain finite-difference method ; Fractal brown undulating terrain modeling ; Subgridding technique ; Transient electromagnetic response    

论文中文摘要:

我国是世界上最大的煤炭生产和消费国家之一。开采过程中煤火导致煤自燃带来的矿井灾害是国家能源战略安全和生态文明建设的重大问题,煤自燃的监测与防治工作迫在眉睫。瞬变电磁法(Transient Electromagnetic Method, TEM)因其具有直接定位高温异常区的技术优势而备受关注。然而,在实际应用中,复杂起伏地形会对TEM的探测效果产生显著影响,使得电磁正演模拟结果与实测数据之间出现偏差,进而影响地质解释的准确性。为此,本文进行三维起伏地形下煤岩分层结构的瞬态电磁响应特性研究,实现高精度三维起伏地形煤岩分层模型的建立与瞬态电磁响应的高效计算。主要内容如下:

(1)基于双向梯度插值、赫斯特指数(Hurst)自适应调整与多尺度分形技术,提出了一种改进的分形布朗运动(Fractal Brownian motion, FBM)地形生成算法,实现了起伏地形的高精度模拟,生成的建模文件可直接应用于电磁计算,无需二次集成。相比于商业软件建模,本文方法建模时间缩短,提升了三维起伏地形的建模速度与模型质量。

(2)基于细化区域自动识别并根据地形确定网格细化程度,提出了一种新型亚网格FDTD(Finite-Difference Time-Domain, FDTD)方法,实现了起伏地表的局部细化。同时,允许在计算区域内根据条件指定位置实施网格加密。与现有的亚网格方法相比,该方法的计算内存占用和计算时间分别减少了42.5%和46%。

(3)基于本文所提的算法,实现了复杂地形条件下电磁场传播特性的精确模拟,并分析了不同复杂地形下模型的瞬态电磁响应。通过系统分析地表形态、煤层形态、地表-煤层双重复杂地形耦合特征及辐射源收发点装置布局等因素对瞬态电磁响应影响规律进行分析与总结。

本研究提出的方法为理解三维起伏地形对瞬态电磁响应的影响提供了高效、可靠的解决方案,对提高地质勘探的精度和有效性具有重要的实用价值。

论文外文摘要:

China is one of the largest coal-producing and consuming countries in the world. The mine disaster caused by spontaneous coal combustion due to coal fire in the mining process is a major issue in the national energy strategy security and ecological civilization construction, and the monitoring and prevention of spontaneous coal combustion is urgent. The transient electromagnetic method (TEM) has attracted much attention because of its technical advantage in directly locating high-temperature anomalies. However, in practical application, the complex undulating terrain will have a significant impact on the detection effect of TEM, resulting in the deviation between the EM simulation results and the measured data, which in turn affects the accuracy of the geological interpretation. For this reason, this paper investigates the transient electromagnetic response characteristics of coal-rock layered structures in three-dimensional undulating terrain and realizes the establishment of a high-precision three-dimensional undulating terrain coal-rock layered model and the efficient calculation of transient electromagnetic response. The main contents are as follows:

(1) Based on two-way gradient interpolation, Hurst index adaptive adjustment, and multi-scale fractal technology, an improved Fractal Brownian motion (FBM) terrain generation algorithm is proposed, which realizes the high-precision simulation of undulating terrain, and the generated modeling files can be directly applied to electromagnetic calculations without the need for secondary integration. Compared with commercial software modeling, the method in this paper shortens the modeling time and improves the modeling speed and model quality of 3D undulating terrain.

(2) Based on the automatic identification of the refinement region and the determination of the mesh refinement degree according to the terrain, a new subgrid FDTD (Finite-Difference Time-Domain, FDTD) method is proposed to realize the local refinement of the undulating terrain. At the same time, it allows the implementation of grid encryption at specified locations within the computational area according to the conditions. Compared with the existing subgrid methods, the computational memory occupation and computation time of this method are reduced by 42.5% and 46%, respectively.

(3) Based on the algorithm proposed in this paper, accurate simulation of electromagnetic field propagation characteristics under complex terrain conditions is realized, and the transient electromagnetic response of the model under different complex terrain is analyzed. The transient electromagnetic response is analyzed and summarized by systematically analyzing the influence laws on the transient electromagnetic response of factors such as surface morphology, coal seam morphology, surface-coal seam double complex terrain coupling characteristics, and the layout of radiation source transceiver point devices.

The method proposed in this study provides an efficient and reliable solution for understanding the influence of three-dimensional undulating terrain on transient electromagnetic response, which is of great practical value for improving the precision and effectiveness of geological exploration.

参考文献:

[1] 杨方亮. 新型能源体系建设背景下煤炭产业发展前景分析[J]. 中国煤炭, 2024, 50(12): 11-24.

[2] 胡健. 全球煤炭资源利用现状、供需格局及发展趋势[J]. 中国煤炭, 2024, 50(11): 153-162.

[3] 侯玉亭, 张英超, 孙计全, 等. 煤自然发火气体指标及其有机官能团响应特征研究[J]. 中国煤炭, 2024, 50(01): 67-74.

[4] 雷光学. 起伏地形条件下瞬变电磁法探测煤矿水害隐蔽致灾因素应用研究[D]. 北京: 中国矿业大学, 2023.

[5] 张渝, 王福生, 朱令起, 等. 煤田火灾对环境的影响分析[J]. 煤矿安全, 2024, 55(12): 132-142.

[6] Jia J, Wang F. Study on emergency escape route planning under fire accidents in the Burtai coal mine[J]. Scientific Reports, 2022, 12(1): 13074-13074.

[7] M. Onifade, B. Genc. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020, 30(03): 303-311.

[8] 郑学召, 徐承宇, 王宝元, 等. 不同温度与探测频率下的煤电性参数变化规律研究[J]. 工矿自动化, 2021, 47(03): 27-33.

[9] Guo J, Shang H, Cai G, et al. Early detection of coal spontaneous combustion by complex acoustic waves in a concealed fire source[J]. ACS omega, 2023, 8(19): 16519-16531.

[10] Zhang D, Zhou X, Cheng E, et al. Investigation on effects of HPM pulse on UAV’s datalink[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(3): 829-839.

[11] Dong K, Zhou B, Zhang Y, et al. Study on radon gas transport law of overlying rock layer under different geological conditions of coal spontaneous combustion[J]. Journal of Radioanalytical and Nuclear Chemistry, 2024, 333(12): 6379-6389.

[12] Meng Q, Ma G, Li L, et al. An Optimized Detection Approach to Subsurface Coalfield Spontaneous Combustion Areas Using Airborne Magnetic Data[J]. Remote Sensing, 2025, 17(7): 1185.

[13] Liang Y, Yang Y, Guo S, et al. Combustion mechanism and control approaches of underground coal fires: a review[J]. International Journal of Coal Science and Technology, 2023, 10(1): 24.

[14] Zhang B, Xiao F, Jin W. Burnt coal field detection via magnetic exploration[J]. Environmental Earth Sciences, 2023, 82(7): 160.

[15] Chengshuai L, Han L, Zhanli Z, et al. Research on the Application of Transient Electromagnetic Exploration in Coal Mine Water Disaster Prevention and Control[J]. Journal of Physics: Conference Series, 2024, 2895(1): 012054-012054.

[16] Yanlong Y, Ci Z, Yaxiao D, et al. Geological exploration of coal mine burnt rock and waterlogged area boundary based on transient electromagnetic and high-density electrical resistivity[J]. Scientific Reports, 2024, 14(1): 5105-5105.

[17] 国家安全监管总局规划科技司. 关于征求对我国煤矿火灾防治科技发展对策意见的通知[EB/OL]. https://www.chinamine-safety.gov.cn, 2014-11-19.

[18] Wang Y, Li X, Fu G, et al. 3D Numerical simulation and inversion of TEM data in coal seam fire detection[J]. Metallurgical and Mining Industry, 2015, 7(6): 321-326.

[19] F. L. Teixeira. Time-domain finite-difference and finite-element methods for Maxwell equations in complex media[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2150-2166.

[20] Jin Fa Lee, R. Lee, A. Cangellaris. Time-domain finite-element methods[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(3): 430-442.

[21] Wang F, Wei C, Ji H, et al. Research on 3D assisted planning and approval of urban infrastructure projects based on UAV oblique photogrammetry[J]. Applied Science and Innovative Research, 2024, 8(4): 73.

[22] Xu J, Zhang S, Jing H, et al. Improving real-scene 3D model quality of unmanned aerial vehicle oblique-photogrammetry with a ground camera[J]. Remote Sensing, 2024, 16(21): 3933-3933.

[23] Erunova G M, Kuznetsova S A, Shpedt A A, et al. Geomorphometric analysis of agricultural areas based on a new digital elevation model[J]. Russian Agricultural Sciences, 2025, 50(5): 447-452.

[24] 王新宇. 起伏地形条件下电性源瞬变电磁三维正演[D]. 荆州: 长江大学, 2022.

[25] MacGillivray J T. Trillion cell CAD-based cartesian mesh generator for the finite-difference time-domain method on a single-processor 4-GB workstation[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2187-2190.

[26] Zeng Y, Wu J, Li X. Modeling of complex geometries based on secondary development of GID software and 3D forward of TEM[J]. Progress in Geophysics, 2015, 30(5): 2412-2419.

[27] E.J. B, J.S. L, S.A. L. Modelling the behaviour of microchannel plates using CST particle tracking software[J]. Journal of Instrumentation, 2022, 17(08): C08009.

[28] Vasile B, AnaMaria A, Camelia O, et al. A stock indexes modelling using geometric brownian motion and geometric fractional brownian motion[J]. Mathematics, 2021, 9(22): 2983-2983.

[29] 曾艳阳, 康凤举, 许鹏, 等. 水下战视景仿真系统建模及实时场景渲染方法[J]. 系统工程与电子技术, 2013, 35(02): 436-440.

[30] Lu X, Zhang Y. Application of fractal simulation in DEM interpolation[J]. Science of Surveying and Mapping, 2012, 37(2): 107-109.

[31] Wen W, Zhou Y, Li X, et al. 3D underwater terrain simulation using fractional Brownian motion[J]. Computer Engineering and Applications, 2006, 46(25): 242-245.

[32] 路晶, 夏桂书. 基于分形融合FBM的海浪模型研究[J]. 科学技术与工程, 2013, 13(34): 10198-10202.

[33] 葛仁华. 基于分形原理的煤矿塌陷区地形模拟[D]. 青岛: 山东科技大学, 2007.

[34] Hui Z, Liu Y, Yin C, et al. Detection of coal spontaneous combustion using the TEM method: A synthetic study[J]. Pure and Applied Geophysics, 2021, 178(10): 3987-4000.

[35] 辛邈. 煤自燃分段电学特性及瞬变电磁探测技术研究[D]. 北京: 中国矿业大学, 2017.

[36] 郭立新, 李江挺. 计算物理学[M]. 西安: 西安电子科技大学出版社, 2009.

[37] 刘硕. 基于时域有限差分的雷达目标散射特性计算方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.

[38] 薄西超. 时域有限差分算法及其在多物理中的应用[D]. 南京: 东南大学, 2020.

[39] 黄莉. 瞬态电磁散射问题的时域积分方程方法研究[D]. 上海: 上海交通大学, 2021.

[40] 陈林峰. 基于时域有限元法的任意三维结构电磁传输特性的研究[D]. 成都: 电子科技大学, 2017.

[41] 刘金瑞. 高阶矩量法电磁建模参数的优选方法研究[D]. 西安: 西安电子科技大学, 2023.

[42] Chen Y, Huang Q, Yong A W, et al. Poisson quadrature method of moments for 2D kinetic equations with velocity of constant magnitude[J]. Multiscale Modeling and Simulation, 2025, 23(1): 577-610.

[43] Lam Q A, Vega R M. A characteristics approach to the finite element method[J]. nuclear science and engineering, 2025, 199(3): 388-409.

[44] Khalefa J S. An analytic and numerical study of helmholtz equation using finite element method[J]. Mathematical Modelling of Engineering Problems, 2024, 11(12): 3440-3446.

[45] 李啸天. 基于有限元法的封装电子器件热-流耦合仿真计算方法研究[D]. 杭州: 杭州电子科技大学, 2024.

[46] 盖增喜, 陈晨旭. SH波地表散射的局域边界元模拟[J]. 地球物理学报, 2020, 63(6): 2274-2280.

[47] Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. Microwave Theory and Techniques, IEEE Transactions on, 1999, 47(10): 2003-2007.

[48] Honarbakhsh B, Asadi S. Notice of retraction: Analysis of multiconductor transmission lines using the CN-FDTD method[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 59(1): 184-192.

[49] Zhao S, Wei G. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces[J]. Journal of Computational Physics, 2004, 200(1): 60-103.

[50] Zivanovic S S, Yee K S, Mei K K. A subgridding method for the time-domain finite-difference method to solve Maxwell's equations[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(3): 471-479.

[51] Hartley J, Giannopoulos A, Davidson N. Switched huygens subgridding for the FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6872-6882.

[52] Xiao K, Pommerenke D J, Drewniak J L. A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(7): 1981-1990.

[53] Prescott D T, Shuley N V. A method for incorporating different sized cells into the finite-difference time-domain analysis technique[J]. Microwave and Guided Wave Letters IEEE, 1992, 2(11): 434-436.

[54] 边成. 三维FDTD亚网格技术的研究[D]. 西安: 西安电子科技大学, 2015.

[55] Bérenger J. A Huygens subgridding for the FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(12): 3797.

[56] 李啸天. 基于有限元法的封装电子器件热-流耦合仿真计算方法研究[D]. 杭州: 杭州电子科技大学, 2024.

[57] Ijjeh A A, Cueille M, Dubard J L, et al. TLM local mesh-refinement scheme based on N-Port network representation and conference-matrix connection topology[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(7): 2888-2896.

[58] Lam A Q, Vega R M. A characteristics approach to the finite element method[J]. Nuclear Science and Engineering, 2025, 199(3): 388-409.

[59] 柴玫. FDTD网格剖分技术研究及近地细导线散射计算[D]. 西安: 西安电子科技大学, 2009.

[60] White M J, Iskander M F, Huang Z. Development of a multigrid FDTD code for three-dimensional applications[J]. Antennas and Propagation IEEE Transactions on, 1997, 45(10): 1512-1517.

[61] Wang B Z., Wang Y J., Yang W H, et al. A hybrid 2-D ADI-FDTD subgridding scheme for modeling on-chip interconnects[J]. IEEE Transactions on Advanced Packaging, 2001, 24(2): 528-533.

[62] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定FDTD亚网格算法[J]. 物理学报, 2024, 8(73): 1-26.

[63] 冯健, 闫晨晨, 方明. 面中心立方体网格FDTD方法中亚网格技术研究[J]. 微波学报, 2024, 1-6.

[64] J. Francés, Otero B, Bleda S, et al. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications[J]. Computer Physics Communications, 2015, 191(1): 43-51.

[65] 李双洋. DL-FDTD算法研究及仿真软件的开发[D]. 成都: 电子科技大学, 2021.

[66] 陈理, 秦其明, 王楠, 等. 大地电磁测深正演和反演研究综述[J]. 北京大学学报(自然科学版), 2014, (5): 6.

[67] Tang J T, Ren Z Y, Hua X R. The forward modeling and inversion in geophysical electromagnetic field[J]. Progress in Geophysics, 2007, 22(4): 1181-1194.

[68] Wait J R, Hill D A. Electromagnetic surface fields produced by a pulse-excited loop buried in the earth[J]. Journal of Applied Physics, 1972, 43(10): 3988-3991.

[69] Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach[J]. Geophysics, 1984, 49(7): 870-894.

[70] Gunderson B M, Newman G A, Hohmann G W. Three-dimensional transient electromagnetic responses for a grounded source[J]. Geophysics, 1986, 51(11): 2117-2130.

[71] Wang C, Dong Y, Gao J, et al. Three-dimensional forward modeling and inversion study of transient electromagnetic method considering inhomogeneous magnetic permeability[J]. Applied Sciences, 2024, 14(24): 11660-11660.

[72] 李飞, 程久龙, 温来福, 等. 瞬变电磁场有限差分与数字滤波双模型三维正演方法[J]. 地球物理学进展, 2020, 35(03): 963-969.

[73] 张双狮, 雷朝军, 刘迎辉, 等. 瞬态电磁场三维时域有限差分模拟研究[J]. 电子科技大学学报, 2019, 48(01): 13-21.

[74] 邱长凯, 殷长春, 刘云鹤, 等. 三维时间域航空电磁有理Krylov正演研究[J].地球物理学报, 2020, 63(02): 715-725.

[75] 屈少波, 朱姣, 姜志海, 等. 复杂地形瞬变电磁三维正演模拟与地形效应分析[J].煤田地质与勘探, 2024, 52(04): 137-151.

[76] Zhang X, Yan L, Huang X, et al. Three-dimensional forward modeling of transient electromagnetic method considering induced polarization effect based on spectral element method[J]. Minerals, 2023, 14(1): 24.

[77] 李忠乾. 起伏地形条件下三维大地电磁正演模拟[D]. 桂林: 桂林理工大学, 2022.

[78] Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 2000, 64(5): 1759-1763.

[79] Valverde A J M, Ruiz-Cabello M, Bretones A R, et al. Analysis and improvement of the stability of a 3-D FDTD subgridding method by applying an LECT-based technique[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(1): 791-799.

[80] Feng J, Fang M, Song X, et al. FDTD modeling of nonlocality in a nanoantenna accelerated by a CPU–GPU heterogeneous architecture and subgridding techniques[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(2): 1708-1720.

[81] Deng L, Wang Y, Tian C, et al. A symmetric FDTD subgridding method with guaranteed stability and arbitrary grid ratio[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(12): 9207-9221.

中图分类号:

 TM15    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式