- 无标题文档
查看论文信息

论文中文题名:

 车辆电磁混合主动悬架协调控制研究    

姓名:

 景强强    

学号:

 18205020034    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080204    

学科名称:

 工学 - 机械工程 - 车辆工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 车辆工程    

研究方向:

 车辆系统动力学与控制    

第一导师姓名:

 寇发荣    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research on the Coordinated Control of Vehicle Electromagnetic Hybrid Active Suspension    

论文中文关键词:

 电磁混合主动悬架 ; 天地棚控制 ; 阻尼优化 ; 内分泌控制 ; 协调控制    

论文外文关键词:

 Electromagnetic hybrid active suspension ; Skyhook-groundhook control ; Damping optimization ; Endocrine control ; Coordinated control    

论文中文摘要:

     车辆悬架系统的平顺性和操稳性之间存在着固有矛盾,同时汽车在不同行驶工况下对于悬架系统的性能需求也各不相同。为了有效提高车辆在不同行驶工况下的悬架动态性能,降低主动悬架能耗。本文提出了一种电磁混合主动悬架系统,设计了内分泌复合天地棚控制策略,并展开协调控制研究。

     在分析电磁混合主动悬架结构组成和工作原理基础上,分别建立了悬架二自由度动力学模型、直线电机模型、电磁阀减振器模型以及路面不平度模型。根据电磁混合主动悬架的特点,对不同行车速度跟不同路面等级构成的行驶工况进行了悬架工作模式划分。为最大程度实现不同模式下电磁混合主动悬架系统性能的改善,设计了基于不同行驶工况下的天地棚阻尼参数优化分析,利用加权优化函数与能耗最低函数进行双目标函数优化,得到不同模式下的最优天地棚阻尼参数。同时为进一步提高天地棚阻尼控制的效果,借鉴生物内分泌激素调节机制,设计了内分泌复合天地棚控制策略。并利用MATLAB软件进行建模仿真,仿真分析了各模式下被动悬架、天地棚控制策略和内分泌天地棚控制策略的控制效果。最后试制了电磁混合主动悬架物理样机并展开台架试验,以验证内分泌天地棚协调控制的有效性。

     仿真结果表明:电磁混合主动悬架内分泌复合天地棚控制在不同模式下的控制目标都得到了对应的改善,且控制效果均优于天地棚控制。如初始参数仿真时,在舒适模式下簧载质量加速度较被动悬架降低了28.9%,安全模式下轮胎动载荷较被动悬架降低了22.8%。台架试验结果表明:电磁混合主动悬架内分泌复合天地棚控制试验结果与仿真结果基本吻合,试验验证了控制策略的有效性。如初始参数试验时,电磁混合主动悬架内分泌复合天地棚控制在经济模式下簧载质量加速度试验结果与仿真结果相对误差为2.52%,舒适模式下簧载质量加速度试验结果与仿真结果相对误差为4.42%,均在合理范围,表明电磁混合主动悬架内分泌复合天地棚控制有效。

论文外文摘要:

  

       The inherent contradiction between riding comfort and handling stability of vehicle suspension system has always existed. At the same time, the performance requirements of suspension system are different under different external driving conditions. In order to effectively improve the dynamic performance of suspension under different driving conditions and reduce the energy consumption of active suspension. An electromagnetic hybrid active suspension system is designed, and the control strategy of endocrine hybrid active suspension system is proposed.

       Based on the analysis of the structure and working principle of the electromagnetic hybrid active suspension, the two DOF dynamic model of the suspension, the linear motor model, the electromagnetic valve damper model and the road roughness model are established, respectively. According to the characteristics of the electromagnetic hybrid active suspension, the working modes of the suspension under different driving speeds and different road grades are divided. In order to improve the performances of the electromagnetic hybrid active suspension system in different modes to the greatest extent, the optimization analysis of the damping parameters of the skyhook-groundhook control under different driving conditions is designed. The double objective function optimization is carried out by using the damping optimal function and the minimum energy consumption function, the optimal damping parameters of the skyhook-groundhook control under different modes are obtained. At the same time, in order to further improve the damping control effect of the skyhook-groundhook, the endocrine composite skyhook-groundhook control strategy is designed. The control effect of the passive suspension, the skyhook-groundhook control and the endocrine composite skyhook-groundhook control strategy under each mode are simulated and analyzed by using MATLAB software. Finally, the prototype of the electromagnetic hybrid active suspension is produced and the test bench is built, and the experimental research on the electromagnetic hybrid active suspension is carried out to verify its effectiveness.

      The simulation results show that the control objectives of the hybrid active suspension with the endocrine composite skyhook-groundhook control under different modes are improved, correspondingly. The different control objectives can be achieved, and the control effect is better than that of the skyhook-groundhook control. For example, under initial paramaters simulation, compared with passive suspension, the sprung mass acceleration under comfort mode is reduced by 28.9%, and the tire dynamic load under safety mode is reduced by 22.8%. The bench test results show that, the test results are basically consistent with the simulation results, which verifies the control effect of endocrine composite skyhook-groundhook control strategy. The relative error of the sprung mass acceleration under economy mode between the simulation results and test results is 2.52%, and the relative error under comfort mode between the simulation results and test results is 4.42%, which is within reasonable range. The test results shows that the control of the electromagnetic hybrid active suspension is effective.

参考文献:

[1] Tseng H.E, Hrovat D. State of the art survey: active and semi-active suspension control[J].Vehicle System Dynamics, 2015, 53(07): 1034-1062.

[2] Zhang Y, Zhang X, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles[J]. Journal of the Franklin Institute, 2015, 352(02): 485-499.

[3] 郜浩楠, 徐俊, 蒲晓晖, 等. 面向新能源汽车的悬架振动能量回收在线控制方法[J]. 西安交通大学学报, 2020,61(04): 1-8.

[4] Zhang G, Cao J, Yu F. Design of active and energy-regenerative controllers for DC-motor-based suspension[J]. Mechatronics, 2012, 22(08): 1124-1134.

[5] Nie S, Ye Z, Yong W, et al. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control[J]. Mechanical Systems & Signal Processing, 2018, 99(15):730-746.

[6] 李奥运, 廖林清, 张君, 等. 某车型悬架运动学分析及多目标优化研究[J]. 重庆理工大学学报(自然科学), 2019,33(06): 34-39+64.

[7] 郭孔辉, 王杨. 一种改进的加速度阻尼半主动控制策略研究[J]. 汽车工程, 2019, 41(05): 5-10.

[8] Ma X.B, Wong P.K, Zhao J, et al. Design and testing of a nonlinear model predictive controller for ride height control of automotive semi-active air suspension systems [J]. IEEE Access, 2018,6(99): 63777-63793.

[9] 李静, 韩佐悦, 周瑜, 等. 基于整车分析的磁流变减振器优化研究[J]. 振动与冲击, 2018, 37(23): 164-170.

[10] Wajdi S.A, Mohamed H.S., Yuzita Y, Advances in the control of mechatronic suspension systems[J]. Journal of Zhejiang University Science C-Computers & Electronics, 2014,15(10):848-860.

[11] Wendel G.R., Stecklein G.L. A regenerative active suspension system[C]SAE Publication SP-861, Paper No: 910659, 1991:129-135.

[12] Okada Y, Harada H, Suzuki K. Active and regenerative control of an electro dynamic-type suspension [J]. JSME International Journal,Series C, 1997,40(02): 272-278.

[13] Montazeri-Gh M, and Kavianipour O, Investigation of the active electromagnetic suspension system considering hybrid control strategy. Proceedings of the Institution of Mechanical Engineers, 2014,228(10):1658-1669.

[14] Sun W, Zhao Y, Li J, et al. Active Suspension Control With Frequency Band Constraints and Actuator Input Delay[J]. IEEE Transactions on Industrial Electronics, 2011,59(01):30–537.

[15] 寇发荣, 魏冬冬, 梁津, 等.一种馈能型混合主动悬架的多模式协调控制[J].中国机械工程, 2018, 29(11): 1356-1363.

[16] 汪若尘, 丁彦姝, 孙东, 等.基于路面激励自适应的液电馈能悬架动力学性能协调控制[J].农业工程学报, 2019, 35(06): 55-64.

[17] Kou F, Wei D, and Tian L.Multimode Coordination Control of a Hybrid Active Suspension[J]. Shock and Vibration, Article ID 6378023, 2018:1-16.

[18] 秦武, 朱钢, 上官文斌, 等. 具有扰动观测器的汽车主动悬架滑模控制[J]. 振动工 程学报, 2020, 33(01): 158-167.

[19] 陈双, 宗长富, 刘立国. 主动悬架车辆平顺性和操纵稳定性协调控制的联合仿真[J].汽车工程, 2012,34(09): 791-797.

[20] Nakano K, Suda Y, Nakadai S. Self-powered active vibration control using a single electric actuator[J]. Journal of Sound & Vibration, 2003,260(02): 213-235.

[21] Nakano K. Combined type self-powered active vibration control of truck cabins[J]. Vehicle System Dynamics, 2004,41(06): 449-473.

[22] 孟祥鹏,孙泽宇,丁仁凯,等.基于改进天棚控制的混合电磁主动悬架节能机理与试验[J].江苏大学学报(自然科学版),2020,41(06):627-633.

[23] 袁春元, 蔡锦康, 王新彦. 基于粒子群算法的车辆悬架PID控制器研究[J]. 中国农机化学报, 2019,40(05):91-97.

[24] Roshan Y.M, Maravandi A, Moallem M. Power electronics control of an energy regenerative mechatronic damper[J]. IEEE Transactions on Industrial Electronics, 2015, 62(05): 3052-3060.

[25] Shi D.H, Chen L, Wang R.C, et al. Research on Energy-Regenerative Performance of Suspension System with Semi-active Control[J].Journal of vibration engineering & technologies, 2019, 5(07): 465-475.

[26] 张宇翔, 陈仁文, 任龙, 等. 复合式电磁馈能悬架阻尼器的设计与测试[J]. 仪器仪表学报, 2019,40(02): 132-139.

[27] 刘慧军, 陈双, 薛少科, 等. 汽车馈能悬架技术研究综述[J]. 汽车实用技术,2019, 44(16): 60-61+82.

[28] 韩道刚, 董颖. 能量可再生汽车悬架研究概述[J]. 内燃机与配件, 2019, 40(11):58-59.

[29] 张进秋, 黄大山, 刘义乐.改进的地棚半主动控制算法及其性能分析[J].华中科技大学学报(自然科学版), 2017,45(04): 84-89.

[30] 郭孔辉, 隋记魁, 郭耀华.基于天棚和地棚混合阻尼的高速车辆横向减振器半主动控制[J].振动与冲击, 2013,32(02): 18-23.

[31] 汪若尘, 丁彦姝, 孙东, 等.基于路面激励自适应的液电馈能悬架动力学性能协调控制[J].农业工程学报, 2019,35(06):55-64.

[32] Zuo L, Scully B, Shestani J, et al. Design and characterization of an electromagnetic energy harvester for vehicle suspensions[J]. Smart Material Structures, 2010, 19(4):1007-1016.

[33] Sagiv B.D, Ben Z.B. Actively controlled vehicle suspension with energy regeneration capabilities [J]. Vehicle System Dynamic, 2011, 49(06):833–854.

[34] 汪少华, 陈龙, 孙晓强. 半主动空气悬架多模式切换控制模型的分析[J]. 江苏大学学报(自然科学版), 2013,34(06): 637-642.

[35] 汪少华, 陈龙, 孙晓强, 等. 电控空气悬架系统阻尼多模式自适应切换控制研究[J].农业机械学报, 2013, 44(12): 22-28.

[36] Angel L.M, Antonio J.N, José M.C, et al. An adaptive pneumatic system for the attenuation of random vibrations[J]. Journal of Vibration and Control, 2015,21(05): 907-918.

[37] Antonio J.N, Angel L.M, José M.C, et al. An adaptive pneumatic suspension system for improving ride comfort and handling[J]. Journal of Vibration and Control, 2016, 22(06): 1492-1503.

[38] Morales A.L, Nieto A.J, et al. A semi-active vehiclernal of Vibration & Con suspension based on pneumatic springs and magnetorheological dampers[J]. Journal of Vibration and Control, 2018,24(04): 808-821.

[39] Karimi E.P, Khajepour A, Wong A, et al. Analysis and optimization of air suspension system with independent height and stiffness tuning[J]. International Journal of Automotive Technology, 2016, 17(05): 807-816.

[40] 王众. 泵式磁流变减振器设计及试验研究[D].长春:吉林大学,2016.

[41] 战敏. 液电式馈能减振器动力学仿真和性能研究[D].长春:吉林大学,2015.

[42] Ahamed R, Rashid M.M, Ferdaus M.M, et al. Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper[J]. Journal of Low Frequency Noise Vibration & Active Control, 2017, 36(02):177-192.

[43] 彭虎, 张进秋, 张建, 等.并联复合式电磁悬挂模型参考多模式切换控制研究[J].兵工学报, 2019,40(01): 19-28.

[44] 汪少华, 陈龙, 孙晓强, 等.电控空气悬架系统阻尼多模式自适应切换控制研究[J].农业机械学报, 2013, 44(12): 22-28.

[45] Hsieh C.Y, Moallem M, Golnaraghi F . A bidirectional boost converter with application to a regenerative suspension system[J]. IEEE Transactions on Vehicular Technology, 2016, 65(06):4301-4311.

[46] 赵景波, 倪彰, 贝绍轶, 等.电动汽车阻尼可调减振器多模式切换控制研究[J].西南大学学报(自然科学版),2017, 39(06): 158-164.

[47] 汪若尘, 钱禹辰, 丁仁凯, 等.基于LQG的混合电磁悬架阻尼-刚度设计及试验研究[J].振动与冲击, 2018, 37(03): 61-65+84.

[48] Sun L, Lin Y, Geng G, et al. Research on Switching Interconnection Modes and Game Control of Interconnected Air Suspension[J]. Energies ,2019,12(17):1-23.

[49] 丁仁凯.混合电磁主动悬架全路况节能机理与智能切换控制研究[D].镇江:江苏大学,2020.

[50] 吕振鹏,毕凤荣,马腾,等.车辆半主动座椅悬架自适应模糊滑模控制[J].振动与冲击,2021,40(02):265-271.

[51] Martins I, Estevez J, Marques G. Permanent-magnets linear actuators applicability in automobile active suspensions[J]. IEEE Transactions on Vehicular Technology, 2006,55(01):86-94.

[52] Wang J, Wang W, and Atallah K. A Linear Permanent-Magnet Motor for Active Vehicle Suspension[J]. IEEE Transactions on Vehicular Technology,2011,60(01):55-63.

[53]司纪凯. 永磁直线同步电机建模、特性分析及推力控制[M].徐州:中国矿业大学出版社, 2014.

[54] 郑光远. 大推力永磁同步直线电机机械特性研究[D].广州:广东工业大学, 2009.

[55] 罗虹, 陈星, 邓兆祥, 等. 主动悬架的直线电机作动器控制系统研究[J]. 系统仿真学报, 2012, 24(07):1537-1542.

[56] 喻凡, 林逸. 汽车系统动力学[M]. 北京:机械工业出版社, 2005: 148-149.

[57] 寇发荣, 许家楠, 刘大鹏, 等. 电动静液压主动悬架双滑模控制研究[J]. 中国机械工程, 2019,30(05): 542-548+553.

[58] 康耀东, 庞辉, 刘凯, 等.多级可调阻尼半主动空气悬架的天棚控制研究[J].机械科学与技术,2016, 35(05):778-783.

[59] 梁军, 庞辉, 陈嘉楠, 等.车辆半主动悬架分数阶天棚阻尼控制研究[J].机械科学与技术, 2017, 36(12):1949-1955.

[60] 舒双宝, 王晓旭, 夏豪杰, 等.基于神经内分泌算法的智能控制器设计[J].电子测量与仪器学报,2018, 32(07):192-197

[61] 金耀, 于德介, 陈中祥, 等.内分泌LQR控制策略及其主动悬架减振研究[J].振动与冲击, 2016, 35(10):49-54

[62] Tiblbrook A.J, Clarke I.J. Neuroendocrine mechanisims of innate states of attenuated responsiveness of the hypothalamo-pituitary adrenal axis to stress[J].Frontiers in Neuroendocinology,2006, 27(03):285-307.

[63] 寇发荣, 景强强, 马建, 等.电磁混合主动悬架内分泌复合天地棚控制研究[J].机械科学与技术,2020,39(10):1615-1623.

[64] 余志生.汽车理论.[M].5版.北京:机械工业出版社,2009.

[65] 杜毅. 车辆液电耦合式ISD悬架单神经元PID控制与试验研究[D].镇江:江苏大学,2018.

[66] 陈蓉蓉. 基于Agent模型的整车SAS系统半实物仿真研究[D].镇江:江苏大学, 2012.

中图分类号:

 U463.33    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式